AI-Driven Sustainable Video Marketing Strategies: Harnessing Deep Learning Algorithms to Sustainable Advertising Campaigns with Special Reference to the Education Industry

计算机科学 营销 广告 业务 人工智能 算法
作者
C. Ediriweera,M.T. Fernando,Hansini Pramudika
出处
期刊:Asian journal of marketing management [University of Sri Jayewardenepura]
卷期号:3 (01) 被引量:3
标识
DOI:10.31357/ajmm.v3i01.7304
摘要

Purpose: This research explores the interplay between deep learning algorithms, trust in sustainable advertising, and prior knowledge of deep learning algorithms in shaping perceptions of sustainable advertising in the context of education. The study aims to uncover the impact of these factors on sustainable advertising and examine the moderating role of prior knowledge of deep learning algorithms. Design/methodology/approach: The study employs a quantitative research design, utilizing a structured survey instrument for data collection. Simple random sampling techniques were used to select participants from a population of 194,366 1st year students. Data analysis includes multiple regression, mediation analysis, and moderation analysis using Hayes PROCESS Model 58. Findings: The results reveal significant positive effects of deep learning algorithms (independent variable) and trust in sustainable advertising (mediator variable) on sustainable advertising (dependent variable). Prior knowledge of deep learning algorithms (moderator variable) also has a positive influence on sustainable advertising. Trust on sustainable advertising mediates the relationship between deep learning algorithms and sustainable advertising. However, above mediator relationship is negatively moderated by prior knowledge of deep learning algorithms. This suggests that prior knowledge can weaken the positive impact of trust. Originality: This research contributes to the understanding of how AI-driven marketing strategies, trust, and knowledge influence sustainable advertising perceptions. It offers valuable insights into the moderating role of prior knowledge in this context. Implications: The findings have implications for educational institutions and marketing practitioners. They suggest that deep learning algorithms and trust in sustainable advertising can positively impact sustainable advertising perceptions. However, practitioners should be cautious in situations where individuals have high prior knowledge, as trust can reduce impact. Educational institutions can use these insights to optimize their marketing campaigns and foster sustainable advertising in the education sector. Limitations of the study include the reliance on self-reported data and the potential for response bias, which may affect the generalizability of the findings. For future research, investigating the role of other potential moderators and mediators in the relationship between deep learning algorithms and sustainable advertising could provide a more comprehensive understanding of this phenomenon. Keywords: Deep Learning Algorithms, Education Industry, Prior Knowledge of Deep Learning Algorithms, Sustainable Advertising, Trust in Sustainable Advertising

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zachary完成签到 ,获得积分10
3秒前
4秒前
天才小能喵完成签到 ,获得积分0
5秒前
安静严青完成签到 ,获得积分10
5秒前
CYT完成签到,获得积分10
5秒前
柚C美式完成签到 ,获得积分10
5秒前
大气傲易完成签到 ,获得积分10
6秒前
然而。完成签到 ,获得积分10
7秒前
欢喜小蚂蚁完成签到 ,获得积分10
7秒前
YSY完成签到 ,获得积分10
11秒前
倪妮完成签到,获得积分10
14秒前
weng完成签到,获得积分10
14秒前
16秒前
科研孙完成签到,获得积分10
18秒前
t铁核桃1985完成签到 ,获得积分10
20秒前
YiWei完成签到 ,获得积分10
23秒前
蔓越莓完成签到 ,获得积分10
24秒前
echo完成签到 ,获得积分10
24秒前
七仔完成签到 ,获得积分10
26秒前
27秒前
小飞在学习呢完成签到 ,获得积分10
28秒前
c1302128340完成签到,获得积分10
35秒前
赵姗姗完成签到 ,获得积分20
35秒前
calphen完成签到 ,获得积分10
42秒前
Luna爱科研完成签到 ,获得积分10
45秒前
45秒前
woshiwuziq完成签到 ,获得积分10
46秒前
完美世界应助叭叭采纳,获得10
46秒前
柠檬完成签到 ,获得积分10
47秒前
小龙完成签到,获得积分10
48秒前
jeronimo完成签到,获得积分10
49秒前
大模型应助科研通管家采纳,获得10
54秒前
cdercder应助科研通管家采纳,获得10
54秒前
xiaxiao应助科研通管家采纳,获得100
54秒前
cdercder应助科研通管家采纳,获得10
54秒前
whitepiece完成签到,获得积分10
55秒前
梦里繁花完成签到,获得积分10
56秒前
feimengxia完成签到 ,获得积分10
59秒前
赘婿应助sue采纳,获得10
59秒前
CH完成签到,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833939
求助须知:如何正确求助?哪些是违规求助? 3376362
关于积分的说明 10492715
捐赠科研通 3095877
什么是DOI,文献DOI怎么找? 1704767
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859