亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BiCFormer: Swin Transformer based model for classification of benign and malignant pulmonary nodules

变压器 计算机科学 医学 电气工程 工程类 电压
作者
Xiaoping Zhao,Jingjing Xu,Zhichen Lin,Xingan Xue
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 075402-075402 被引量:4
标识
DOI:10.1088/1361-6501/ad38d2
摘要

Abstract Pulmonary cancer is one of the most common and deadliest cancers worldwide, and the detection of benign and malignant nodules in the lungs can be an important aid in the early diagnosis of lung cancer. Existing convolutional neural networks inherit their limitations by extracting global contextual information, and in most cases prove to be less efficient in obtaining satisfactory results. Transformer-based deep learning methods have obtained good performance in different computer vision tasks, and this study attempts to introduce them into the task of computed tomography (CT) image classification of lung nodules. However, the problems of sample scarcity and difficulty of local feature extraction in this field. To this end, we are inspired by Swin Transformer to propose a model named BiCFormer for the task of classifying and diagnosing CT scan images of lung nodules. Specifically, first we introduce a multi-layer discriminator generative adversarial network module for data augmentation to assist the model in extracting features more accurately. Second, unlike the encoder of traditional Transformer, we divide the encoder part of BiCFormer into two parts: bi-level coordinate (BiC) and fast-partial-window (FPW). The BiC module has a part similar to the traditional channel attention mechanism is able to enhance the performance of the model, and is more able to enhance the representation of attention object features by aggregating features along two spatial directions. The BiC module also has a dynamic sparse attention mechanism that filters out irrelevant key-value pairs in rough regions, allowing the model to focus more on features of interest. The FPW module is mainly used to reduce computational redundancy and minimize feature loss. We conducted extensive experiments on the LIDC-IDRI dataset. The experimental results show that our model achieves an accuracy of 97.4% compared to other studies using this dataset for lung nodule classification, making it an effective and competitive method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
555完成签到,获得积分10
3秒前
小二郎应助YU采纳,获得10
7秒前
7秒前
渟柠完成签到 ,获得积分10
8秒前
yu发布了新的文献求助10
11秒前
18秒前
Akim应助芋泥采纳,获得10
28秒前
小钥匙完成签到 ,获得积分10
28秒前
小马甲应助小白果果采纳,获得10
28秒前
31秒前
yu完成签到,获得积分20
33秒前
动听的雨完成签到,获得积分10
33秒前
111发布了新的文献求助10
35秒前
Fayeah完成签到 ,获得积分10
38秒前
39秒前
39秒前
40秒前
nihao完成签到 ,获得积分10
41秒前
科研通AI2S应助科研通管家采纳,获得30
41秒前
月子淇应助科研通管家采纳,获得10
41秒前
华仔应助科研通管家采纳,获得10
41秒前
月子淇应助科研通管家采纳,获得10
41秒前
斯文败类应助科研通管家采纳,获得10
41秒前
月子淇应助科研通管家采纳,获得10
41秒前
42秒前
xie完成签到 ,获得积分10
42秒前
刘飞飞发布了新的文献求助10
44秒前
早日发文章完成签到,获得积分10
46秒前
48秒前
50秒前
小坚果完成签到,获得积分10
52秒前
缥缈寻真完成签到,获得积分10
53秒前
Bressanone完成签到,获得积分10
54秒前
55秒前
59秒前
缥缈寻真发布了新的文献求助10
59秒前
摸鱼大王完成签到 ,获得积分10
59秒前
YU发布了新的文献求助10
1分钟前
李健应助刘飞飞采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488409
求助须知:如何正确求助?哪些是违规求助? 4587292
关于积分的说明 14413420
捐赠科研通 4518572
什么是DOI,文献DOI怎么找? 2475929
邀请新用户注册赠送积分活动 1461433
关于科研通互助平台的介绍 1434333