亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BiCFormer: Swin Transformer based model for classification of benign and malignant pulmonary nodules

变压器 计算机科学 医学 电气工程 工程类 电压
作者
Xiaoping Zhao,Jingjing Xu,Zhichen Lin,Xingan Xue
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 075402-075402 被引量:3
标识
DOI:10.1088/1361-6501/ad38d2
摘要

Abstract Pulmonary cancer is one of the most common and deadliest cancers worldwide, and the detection of benign and malignant nodules in the lungs can be an important aid in the early diagnosis of lung cancer. Existing convolutional neural networks inherit their limitations by extracting global contextual information, and in most cases prove to be less efficient in obtaining satisfactory results. Transformer-based deep learning methods have obtained good performance in different computer vision tasks, and this study attempts to introduce them into the task of computed tomography (CT) image classification of lung nodules. However, the problems of sample scarcity and difficulty of local feature extraction in this field. To this end, we are inspired by Swin Transformer to propose a model named BiCFormer for the task of classifying and diagnosing CT scan images of lung nodules. Specifically, first we introduce a multi-layer discriminator generative adversarial network module for data augmentation to assist the model in extracting features more accurately. Second, unlike the encoder of traditional Transformer, we divide the encoder part of BiCFormer into two parts: bi-level coordinate (BiC) and fast-partial-window (FPW). The BiC module has a part similar to the traditional channel attention mechanism is able to enhance the performance of the model, and is more able to enhance the representation of attention object features by aggregating features along two spatial directions. The BiC module also has a dynamic sparse attention mechanism that filters out irrelevant key-value pairs in rough regions, allowing the model to focus more on features of interest. The FPW module is mainly used to reduce computational redundancy and minimize feature loss. We conducted extensive experiments on the LIDC-IDRI dataset. The experimental results show that our model achieves an accuracy of 97.4% compared to other studies using this dataset for lung nodule classification, making it an effective and competitive method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DSUNNY完成签到 ,获得积分10
2秒前
5秒前
拾叁木完成签到,获得积分20
5秒前
章鱼完成签到,获得积分10
11秒前
14秒前
白苏发布了新的文献求助10
19秒前
努力的淼淼完成签到 ,获得积分10
22秒前
iorpi完成签到,获得积分10
28秒前
毓雅完成签到,获得积分10
33秒前
打打应助白苏采纳,获得10
33秒前
huanger发布了新的文献求助10
36秒前
脑洞疼应助粽子采纳,获得10
45秒前
zzz完成签到 ,获得积分10
56秒前
田様应助吴雪葵采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
啦啦啦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
尹静涵完成签到 ,获得积分10
1分钟前
2分钟前
Crisp完成签到 ,获得积分10
2分钟前
2分钟前
LILYpig完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI5应助morena采纳,获得10
2分钟前
2分钟前
Milo完成签到,获得积分10
2分钟前
番茄黄瓜芝士片完成签到 ,获得积分10
2分钟前
Jasper应助斯诺克虚空索敌采纳,获得10
2分钟前
lighting完成签到 ,获得积分10
2分钟前
张阳阳发布了新的文献求助10
2分钟前
岸在海的深处完成签到 ,获得积分10
2分钟前
张阳阳完成签到,获得积分10
2分钟前
Bressanone完成签到,获得积分10
2分钟前
tao完成签到 ,获得积分10
2分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843176
求助须知:如何正确求助?哪些是违规求助? 3385441
关于积分的说明 10540463
捐赠科研通 3106002
什么是DOI,文献DOI怎么找? 1710846
邀请新用户注册赠送积分活动 823771
科研通“疑难数据库(出版商)”最低求助积分说明 774264