已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MMGInpainting: Multi-Modality Guided Image Inpainting Based on Diffusion Models

修补 计算机科学 人工智能 图像(数学) 模态(人机交互) 计算机视觉 模式识别(心理学)
作者
Cong Zhang,Wenxia Yang,Xin Li,Huan Han
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8811-8823 被引量:16
标识
DOI:10.1109/tmm.2024.3382484
摘要

Proper inference of semantics is necessary for realistic image inpainting. Most image inpainting methods use deep generative models, which require large image datasets to predict and generate content. However, predicting the missing regions and generating coherent content is difficult due to limited control. Existing approaches include image-guided or text-guided image inpainting, but none of them has taken both image and text as the guidance signals, as far as we know. To fill this gap, we propose a multi-modality guided (MMG) image inpainting approach based on the diffusion model. This MMGInpainting method uses both image and text as guidance for generating content within the target area for inpainting, effectively integrating the semantic information conveyed by the guiding image or text into the content of the inpainted region. To construct MMGInpainting, we start by enhancing the U-Net backbone with a customized Nonlinear Activation Free Network (NAFNet). This adapted NAFNet incorporates an Anchored Stripe Attention mechanism, which utilizes anchor points to effectively model global contextual dependencies. To regulate inpainting, we use a Semantic Fusion Encoder to guide the inverse process of the diffusion model. The process is iteratively executed to denoise and generate the desired inpainting result. Additionally, we explore how different modes of meaning interact and coordinate to offer users useful guidance for a more manageable inpainting procedure. Experimental results demonstrate that our approach produces faithful results adhering to the guiding information, while significantly improving computational efficiency. Github Repository: https://github.com/skipper-zc/MMGInpainting/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
hyyyh发布了新的文献求助10
2秒前
瞬间完成签到 ,获得积分10
2秒前
2秒前
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
慕青应助lin采纳,获得10
2秒前
shhoing应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
科研小白完成签到,获得积分10
3秒前
4秒前
5秒前
诚心的哈密瓜完成签到 ,获得积分10
5秒前
延胡索发布了新的文献求助10
6秒前
luojiaxing发布了新的文献求助30
7秒前
8秒前
豆芽发布了新的文献求助10
9秒前
9秒前
9秒前
顺子完成签到,获得积分20
10秒前
落雪完成签到 ,获得积分10
10秒前
小马甲应助延胡索采纳,获得10
11秒前
田様应助白鹤采纳,获得10
14秒前
酷波er应助哈哈哈采纳,获得10
15秒前
火星上雁枫完成签到 ,获得积分10
15秒前
李健应助杜小杜采纳,获得10
15秒前
康神完成签到,获得积分10
16秒前
Zhebo发布了新的文献求助200
17秒前
tianya完成签到,获得积分10
17秒前
20秒前
隐形曼青应助liupf采纳,获得10
21秒前
真正的man完成签到,获得积分10
22秒前
豆芽关注了科研通微信公众号
25秒前
Isabella关注了科研通微信公众号
26秒前
杜小杜发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542800
求助须知:如何正确求助?哪些是违规求助? 4628942
关于积分的说明 14610489
捐赠科研通 4570141
什么是DOI,文献DOI怎么找? 2505604
邀请新用户注册赠送积分活动 1482931
关于科研通互助平台的介绍 1454295