Supplementary Material for: Prediction of MCI progression to AD based on DTI-derived diffusion parameters: construction and validation of a nomogram

列线图 扩散 磁共振弥散成像 计算机科学 医学 内科学 物理 放射科 热力学 磁共振成像
作者
Xinyu Cheng,Li D.,Jieyang Peng,Shu Z.,Xin Xing
标识
DOI:10.6084/m9.figshare.24495964
摘要

Objective: To construct and validate a nomogram that combines diffusion tensor imaging (DTI) parameters and clinically relevant features for predicting the progression of mild cognitive impairment (MCI) to Alzheimer's disease (AD). Method: A retrospective analysis was conducted on the MRI and clinical data of 121 MCI patients, of whom 32 progressed to AD during a four-year follow-up period. The MCI patients were divided into training and validation sets at a ratio of 7:3. DTI features were extracted from MCI patient data in the training set, and their dimensionality was reduced to construct a radiomics signature (RS). Then, combining the RS with independent predictors of MCI disease progression, a joint model was constructed, and a nomogram was generated. Finally, the area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA) were used to evaluate the diagnostic and clinical efficacy of the nomogram based on the data from the validation set. Result: The AUCs of the RS in the training and validation sets were 0.81 and 0.84, with sensitivities of 0.87 and 0.78 and specificities of 0.71 and 0.81, respectively. Multiple logistic regression analysis showed that the RS, clinical dementia rating scale score, and Alzheimer's disease assessment scale score were the independent predictors of progression and thus used to construct the nomogram. The AUCs of the nomogram in the training and validation sets were 0.89 and 0.91, respectively, with sensitivities of 0.78 and 0.89 and specificities of 0.90 and 0.88, respectively. DCA showed that the nomogram was the most valuable model for predicting the progression of MCI to AD and that it provided greater net benefits than other analysed models. Conclusion: Changes in white matter fibre bundles can serve as predictive imaging markers for MCI disease progression, and the combination of white matter DTI features and relevant clinical features can be used to construct a nomogram with important predictive value for MCI disease progression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小羊学学学完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
小二郎应助camile采纳,获得10
1秒前
雾花owo完成签到 ,获得积分10
2秒前
哇噻完成签到,获得积分20
2秒前
ZY完成签到,获得积分10
4秒前
5秒前
Lny关闭了Lny文献求助
6秒前
花誉来完成签到 ,获得积分10
6秒前
刘若鑫发布了新的文献求助10
6秒前
牛肉怪发布了新的文献求助10
6秒前
雾花owo关注了科研通微信公众号
6秒前
7秒前
万能图书馆应助thchiang采纳,获得10
8秒前
8秒前
9秒前
深情安青应助半夏采纳,获得10
10秒前
10秒前
学术丁真完成签到,获得积分10
11秒前
刘之桃发布了新的文献求助10
11秒前
11秒前
顾月发布了新的文献求助10
12秒前
北冥有鱼完成签到,获得积分10
12秒前
星河发布了新的文献求助10
12秒前
13秒前
vantablack发布了新的文献求助10
14秒前
Mic应助明天肯定学习采纳,获得10
14秒前
14秒前
14秒前
1856852发布了新的文献求助10
15秒前
自然的听南完成签到 ,获得积分10
15秒前
久伴完成签到 ,获得积分10
15秒前
15秒前
mmol发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
lxw发布了新的文献求助10
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5527751
求助须知:如何正确求助?哪些是违规求助? 4617517
关于积分的说明 14558567
捐赠科研通 4556090
什么是DOI,文献DOI怎么找? 2496740
邀请新用户注册赠送积分活动 1477085
关于科研通互助平台的介绍 1448393