Machine learning approaches to predict TAS2R receptors for bitterants

受体 生物信息学 苦味 计算生物学 生物 机器学习 G蛋白偶联受体 人工智能 功能(生物学) 味觉感受器 GPR120 经济短缺 品味 生物信息学 计算机科学 生物化学 细胞生物学 基因 哲学 语言学 政府(语言学)
作者
Francesco Ferri,Marco Cannariato,Marco A. Deriu,Lorenzo Pallante
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:121 (6): 1755-1758 被引量:1
标识
DOI:10.1002/bit.28709
摘要

Bitter taste involves the detection of diverse chemical compounds by a family of G protein-coupled receptors, known as taste receptor type 2 (TAS2R). It is often linked to toxins and harmful compounds and in particular bitter taste receptors participate in the regulation of glucose homeostasis, modulation of immune and inflammatory responses, and may have implications for various diseases. Human TAS2Rs are characterized by their polymorphism and differ in localization and function. Different receptors can activate various signaling pathways depending on the tissue and the ligand. However, in vitro screening of possible TAS2R ligands is costly and time-consuming. For this reason, in silico methods to predict bitterant-TAS2R interactions could be powerful tools to help in the selection of ligands and targets for experimental studies and improve our knowledge of bitter receptor roles. Machine learning (ML) is a branch of artificial intelligence that applies algorithms to large datasets to learn from patterns and make predictions. In recent years, there has been a record of numerous taste classifiers in literature, especially on bitter/non-bitter or bitter/sweet classification. However, only a few of them exploit ML to predict which TAS2R receptors could be targeted by bitter molecules. Indeed, the shortage and incompleteness of data on receptor-ligand associations in literature make this task non-trivial. In this work, we provide an overview of the state of the art dealing with this specific investigation, focusing on three ML-based models, namely BitterX (2016), BitterSweet (2019) and BitterMatch (2022). This review aims to establish the foundation for future research endeavours focused on addressing the limitations and drawbacks of existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xdc完成签到,获得积分10
刚刚
1秒前
2秒前
Hashirma发布了新的文献求助10
4秒前
shen完成签到,获得积分10
4秒前
京阿尼发布了新的文献求助10
6秒前
7秒前
李春晓发布了新的文献求助10
8秒前
8秒前
翟蓬勃发布了新的文献求助10
8秒前
等待蚂蚁完成签到 ,获得积分10
9秒前
奇拉维特完成签到 ,获得积分10
9秒前
17857314636发布了新的文献求助10
11秒前
mmx发布了新的文献求助10
11秒前
SC完成签到,获得积分10
12秒前
酷波er应助yongzaizhuigan采纳,获得10
13秒前
13秒前
14秒前
dollydeng完成签到,获得积分10
16秒前
17秒前
kk99123应助廖少跑不快采纳,获得10
17秒前
18秒前
18秒前
20秒前
京阿尼完成签到,获得积分10
20秒前
22秒前
22秒前
晴朗发布了新的文献求助10
23秒前
23秒前
lixueao发布了新的文献求助10
23秒前
四季风发布了新的文献求助10
24秒前
彭于晏应助Hashirma采纳,获得10
24秒前
研友_8y2G0L发布了新的文献求助10
25秒前
25秒前
whq531608发布了新的文献求助10
26秒前
ljssll完成签到,获得积分10
26秒前
顾矜应助17857314636采纳,获得10
29秒前
酷炫雁梅发布了新的文献求助10
30秒前
文艺的明杰完成签到,获得积分10
30秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084113
求助须知:如何正确求助?哪些是违规求助? 3623230
关于积分的说明 11493787
捐赠科研通 3337754
什么是DOI,文献DOI怎么找? 1835001
邀请新用户注册赠送积分活动 903663
科研通“疑难数据库(出版商)”最低求助积分说明 821776