Machine learning approaches to predict TAS2R receptors for bitterants

受体 生物信息学 苦味 计算生物学 生物 机器学习 G蛋白偶联受体 人工智能 功能(生物学) 味觉感受器 GPR120 经济短缺 品味 生物信息学 计算机科学 生物化学 细胞生物学 基因 哲学 语言学 政府(语言学)
作者
Francesco Ferri,Marco Cannariato,Marco A. Deriu,Lorenzo Pallante
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:121 (6): 1755-1758
标识
DOI:10.1002/bit.28709
摘要

Bitter taste involves the detection of diverse chemical compounds by a family of G protein-coupled receptors, known as taste receptor type 2 (TAS2R). It is often linked to toxins and harmful compounds and in particular bitter taste receptors participate in the regulation of glucose homeostasis, modulation of immune and inflammatory responses, and may have implications for various diseases. Human TAS2Rs are characterized by their polymorphism and differ in localization and function. Different receptors can activate various signaling pathways depending on the tissue and the ligand. However, in vitro screening of possible TAS2R ligands is costly and time-consuming. For this reason, in silico methods to predict bitterant-TAS2R interactions could be powerful tools to help in the selection of ligands and targets for experimental studies and improve our knowledge of bitter receptor roles. Machine learning (ML) is a branch of artificial intelligence that applies algorithms to large datasets to learn from patterns and make predictions. In recent years, there has been a record of numerous taste classifiers in literature, especially on bitter/non-bitter or bitter/sweet classification. However, only a few of them exploit ML to predict which TAS2R receptors could be targeted by bitter molecules. Indeed, the shortage and incompleteness of data on receptor-ligand associations in literature make this task non-trivial. In this work, we provide an overview of the state of the art dealing with this specific investigation, focusing on three ML-based models, namely BitterX (2016), BitterSweet (2019) and BitterMatch (2022). This review aims to establish the foundation for future research endeavours focused on addressing the limitations and drawbacks of existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李生发布了新的文献求助10
刚刚
小俊完成签到,获得积分10
1秒前
1秒前
雪白的凡灵完成签到,获得积分10
1秒前
碧蓝梦容发布了新的文献求助10
1秒前
万默发布了新的文献求助10
2秒前
3秒前
端庄水蓝完成签到,获得积分10
3秒前
4秒前
xiaobai2025完成签到 ,获得积分10
4秒前
4秒前
张光光发布了新的文献求助10
5秒前
5秒前
搜集达人应助完美紫采纳,获得10
5秒前
5秒前
6秒前
FashionBoy应助zz采纳,获得10
6秒前
7秒前
Micheal完成签到,获得积分10
7秒前
8秒前
8秒前
qly发布了新的文献求助10
9秒前
仇悦发布了新的文献求助10
9秒前
Hey完成签到 ,获得积分10
9秒前
jinl9587完成签到,获得积分10
9秒前
科目三应助温柔翰采纳,获得10
10秒前
dungaway完成签到,获得积分10
10秒前
在水一方应助落寞丹烟采纳,获得10
11秒前
汉堡包应助调皮秋凌采纳,获得10
11秒前
山复尔尔发布了新的文献求助10
11秒前
核桃发布了新的文献求助10
11秒前
11秒前
CodeCraft应助原神高手采纳,获得10
11秒前
13秒前
知性的藏鸟完成签到 ,获得积分10
13秒前
shidandan完成签到 ,获得积分10
13秒前
科研通AI5应助qly采纳,获得10
13秒前
啾v咪发布了新的文献求助10
14秒前
科研通AI5应助YY采纳,获得10
14秒前
sissiarno完成签到,获得积分0
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804916
求助须知:如何正确求助?哪些是违规求助? 3350009
关于积分的说明 10346893
捐赠科研通 3065849
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808862
科研通“疑难数据库(出版商)”最低求助积分说明 765093