亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Constructing segmentation method for wheat powdery mildew using deep learning

白粉病 分割 人工智能 农学 生物 计算机科学 植物
作者
Hecang Zang,Congsheng Wang,Qing Zhao,Jie Zhang,Junmei Wang,Guoqing Zheng,Guoqiang Li
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:16
标识
DOI:10.3389/fpls.2025.1524283
摘要

Powdery mildew is an important factor affecting wheat yield and global food security as well as a leading factor restricting the sustainable development of agriculture. Timely and accurate segmentation of wheat powdery mildew image is an important practical significance for disease-resistant breeding and precise control. In this study, RSE-Swin Unet was proposed based on the Swin-Unet architecture to address the complex morphology of wheat powdery mildew lesions, blurred boundaries between lesions and non-lesions, and low segmentation accuracy. The method combines ResNet and SENet to solve the abovementioned problem. Firstly, the attention mechanism module SENet is introduced into Swin-Unet, which can effectively capture global and local features in images and extract more important information about powdery mildew. Secondly, the output of the SENet module add to the corresponding feature tensor of the decoder for subsequent decoder operations. Finally, in the deep bottleneck of Swin-Unet network, ResNet network layers are used to increase the expressive power of feature. The test results showed that in the experiment with the self-built wheat powdery mildew dataset, the proposed RSE-Swin Unet method achieved MIoU, mPA, and accuracy values of 84.01%, 89.96%, and 94.20%, respectively, which were 2.77%, 3.64%, and 2.89% higher than the original Swin-Unet method. In the wheat stripe rust dataset, the proposed RSE-Swin Unet method achieved MIOU, MPA, and accuracy values of 84.91%, 90.50%, and 96.88%, respectively, which were 4.64%, 5.38%, and 2.84% higher than those of the original Swin-Unet method. Compared with other mainstream deep learning methods U-Net, PSPNet, DeepLabV3+, and Swin-Unet, the proposed RSE Swin-Unet method can detect wheat powdery mildew and stripe rust image in a challenging situation and has good computer vision processing and performance evaluation effects. The proposed method can accurately detect the image of wheat powdery mildew and has good segmentation performance, which provides important support for the identification of resistance in wheat breeding materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jlw完成签到,获得积分10
11秒前
21秒前
25秒前
Yan应助科研通管家采纳,获得10
30秒前
Yan应助科研通管家采纳,获得10
30秒前
甜美的秋尽完成签到,获得积分10
32秒前
35秒前
35秒前
科研通AI5应助山海风采纳,获得10
38秒前
向往发布了新的文献求助10
41秒前
41秒前
sgyhbxf25完成签到,获得积分10
52秒前
橙子完成签到,获得积分10
55秒前
56秒前
1分钟前
1分钟前
1分钟前
1234发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
charliechen完成签到 ,获得积分10
1分钟前
伊斯坦堡的喵完成签到,获得积分10
1分钟前
1分钟前
1分钟前
xl发布了新的文献求助10
1分钟前
黄玉发布了新的文献求助10
1分钟前
传奇3应助黄玉采纳,获得10
1分钟前
1分钟前
医学机长完成签到,获得积分10
1分钟前
汉堡包应助cjh采纳,获得10
1分钟前
significant完成签到,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助150
2分钟前
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
希望天下0贩的0应助yga18采纳,获得10
2分钟前
TTK发布了新的文献求助30
2分钟前
打打应助认真的幻姬采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4851448
求助须知:如何正确求助?哪些是违规求助? 4150201
关于积分的说明 12856560
捐赠科研通 3898075
什么是DOI,文献DOI怎么找? 2142340
邀请新用户注册赠送积分活动 1162125
关于科研通互助平台的介绍 1062141