已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on Rapid and Accurate 3D Reconstruction Algorithms Based on Multi-View Images

计算机科学 算法 人工智能 计算机视觉
作者
Lihong Yang,Hang Ge,Zhiqiang Yang,Jia He,Lei Gong,Wanjun Wang,Yao Li,Liguo Wang,Zhili Chen
出处
期刊:Applied sciences [MDPI AG]
卷期号:15 (8): 4088-4088
标识
DOI:10.3390/app15084088
摘要

Three-dimensional reconstruction entails the development of mathematical models of three-dimensional objects that are suitable for computational representation and processing. This technique constructs realistic 3D models of images and has significant practical applications across various fields. This study proposes a rapid and precise multi-view 3D reconstruction method to address the challenges of low reconstruction efficiency and inadequate, poor-quality point cloud generation in incremental structure-from-motion (SFM) algorithms in multi-view geometry. The methodology involves capturing a series of overlapping images of campus. We employed the Scale-invariant feature transform (SIFT) algorithm to extract feature points from each image, applied the KD-Tree algorithm for inter-image matching, and Enhanced autonomous threshold adjustment by utilizing the Random sample consensus (RANSAC) algorithm to eliminate mismatches, thereby enhancing feature matching accuracy and the number of matched point pairs. Additionally, we developed a feature-matching strategy based on similarity, which optimizes the pairwise matching process within the incremental structure from a motion algorithm. This approach decreased the number of matches and enhanced both algorithmic efficiency and model reconstruction accuracy. For dense reconstruction, we utilized the patch-based multi-view stereo (PMVS) algorithm, which is based on facets. The results indicate that our proposed method achieves a higher number of reconstructed feature points and significantly enhances algorithmic efficiency by approximately ten times compared to the original incremental reconstruction algorithm. Consequently, the generated point cloud data are more detailed, and the textures are clearer, demonstrating that our method is an effective solution for three-dimensional reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助可乐土豆饼采纳,获得10
刚刚
Kiki完成签到,获得积分10
1秒前
2秒前
酷炫忆雪发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
7秒前
7秒前
绿豆汤完成签到 ,获得积分10
7秒前
贪玩的秋柔应助予秋采纳,获得10
7秒前
科研狗发布了新的文献求助10
9秒前
星辰大海应助辛雨凡采纳,获得10
9秒前
9秒前
puhong zhang发布了新的文献求助10
10秒前
11秒前
wanci应助lby采纳,获得10
11秒前
NexusExplorer应助平淡寒天采纳,获得10
12秒前
12秒前
万能图书馆应助飘逸太清采纳,获得10
12秒前
nn应助zxx采纳,获得10
14秒前
14秒前
SciGPT应助mamama采纳,获得10
15秒前
呼啦完成签到,获得积分10
17秒前
黄寒梅发布了新的文献求助10
17秒前
miwu1232完成签到,获得积分10
17秒前
闪光的flash完成签到 ,获得积分10
18秒前
萧水白完成签到,获得积分10
18秒前
乐乐应助yyy采纳,获得10
20秒前
李海完成签到 ,获得积分10
20秒前
呼啦发布了新的文献求助10
22秒前
赘婿应助Pupily采纳,获得10
22秒前
24秒前
赘婿应助woods采纳,获得10
27秒前
国服躺赢完成签到,获得积分10
27秒前
情怀应助科研通管家采纳,获得10
27秒前
汉堡包应助科研通管家采纳,获得10
27秒前
我是老大应助科研通管家采纳,获得10
27秒前
Ava应助科研通管家采纳,获得10
27秒前
斯文败类应助科研通管家采纳,获得10
27秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584366
求助须知:如何正确求助?哪些是违规求助? 4667919
关于积分的说明 14770159
捐赠科研通 4610426
什么是DOI,文献DOI怎么找? 2529801
邀请新用户注册赠送积分活动 1498815
关于科研通互助平台的介绍 1467321