Deep-Learning-Based Integration of Sequence and Structure Information for Efficiently Predicting miRNA–Drug Associations

序列(生物学) 计算生物学 药品 小RNA 计算机科学 深度学习 人工智能 机器学习 生物 遗传学 基因 药理学
作者
Nan Sheng,Yunzhi Liu,Ling Gao,Lei Wang,Can Si,Lan Huang,Yan Wang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00038
摘要

Extensive research has shown that microRNAs (miRNAs) play a crucial role in cancer progression, treatment, and drug resistance. They have been recognized as promising potential therapeutic targets for overcoming drug resistance in cancer treatment. However, limited attention has been paid to predicting the association between miRNAs and drugs by computational methods. Existing approaches typically focus on constructing miRNA-drug interaction graphs, which may result in their performance being limited by interaction density. In this work, we propose a novel deep learning method that integrates sequence and structural information to infer miRNA-drug associations (MDAs), called DLST-MDA. This approach innovates by utilizing attribute information on miRNAs and drugs instead of relying on the commonly used interaction graph information. Specifically, considering the sequence lengths of miRNAs and drugs, DLST-MDA employs multiscale convolutional neural network (CNN) to learn sequence embeddings at different granularity levels from miRNA and drug sequences. Additionally, it leverages the power of graph neural networks to capture structural information from drug molecular graphs, providing a more representational analysis of the drug features. To evaluate DLST-MDA's effectiveness, we manually constructed a benchmark data set for various experiments based on the latest databases. Results indicate that DLST-MDA performs better than other state-of-the-art methods. Furthermore, case studies of three common anticancer drugs can evidence their usefulness in discovering novel MDAs. The data and source code are released at https://github.com/sheng-n/DLST-MDA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
muxc发布了新的文献求助10
1秒前
huahua完成签到 ,获得积分10
4秒前
7秒前
Orange应助可乐采纳,获得10
7秒前
高高的从波完成签到,获得积分10
9秒前
YJ完成签到,获得积分10
10秒前
科研执修完成签到,获得积分10
11秒前
MADAO完成签到 ,获得积分10
11秒前
zheweitang发布了新的文献求助20
13秒前
聪慧沂完成签到,获得积分10
13秒前
Cai完成签到,获得积分10
13秒前
蜡笔小新完成签到,获得积分10
16秒前
波里舞完成签到 ,获得积分10
16秒前
whyhanano完成签到,获得积分10
21秒前
黑眼圈完成签到 ,获得积分10
21秒前
SC完成签到 ,获得积分10
23秒前
清爽的火车完成签到 ,获得积分10
24秒前
alixy完成签到,获得积分10
27秒前
柳觅夏完成签到,获得积分10
28秒前
cugwzr完成签到,获得积分10
28秒前
韩韩完成签到 ,获得积分10
30秒前
33秒前
36秒前
CNYDNZB完成签到 ,获得积分10
37秒前
zheweitang完成签到,获得积分10
37秒前
我心飞发布了新的文献求助10
39秒前
ly完成签到,获得积分10
42秒前
天天快乐应助haochi采纳,获得10
42秒前
沉醉的中国钵完成签到 ,获得积分10
47秒前
blUe完成签到,获得积分10
47秒前
邵宏业关注了科研通微信公众号
50秒前
CYYDNDB完成签到 ,获得积分10
52秒前
KK完成签到 ,获得积分10
54秒前
可乐完成签到 ,获得积分10
55秒前
hannah完成签到 ,获得积分10
56秒前
mike2012完成签到 ,获得积分10
56秒前
tjpuzhang完成签到 ,获得积分10
57秒前
baoxiaozhai完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Research Handbook on Multiculturalism 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Face recognition: challenges,achievementsandfuture directions. 400
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847893
求助须知:如何正确求助?哪些是违规求助? 3390526
关于积分的说明 10561752
捐赠科研通 3110943
什么是DOI,文献DOI怎么找? 1714604
邀请新用户注册赠送积分活动 825296
科研通“疑难数据库(出版商)”最低求助积分说明 775471