Application of Interpretable Machine Learning Models to Predict the Risk Factors of HBV‐Related Liver Cirrhosis in CHB Patients Based on Routine Clinical Data: A Retrospective Cohort Study

随机森林 接收机工作特性 人工智能 特征选择 机器学习 逻辑回归 支持向量机 多层感知器 医学 阿达布思 决策树 乙型肝炎病毒 布里氏评分 朴素贝叶斯分类器 计算机科学 人工神经网络 免疫学 病毒
作者
Xia Wei,Yafeng Tan,Bing Mei,Yizheng Zhou,Jufang Tan,Zhaxi Pubu,Bo‐Hyun Sang,Tao Jiang
出处
期刊:Journal of Medical Virology [Wiley]
卷期号:97 (3)
标识
DOI:10.1002/jmv.70302
摘要

ABSTRACT Chronic hepatitis B (CHB) infection represents a significant global public health issue, often leading to hepatitis B virus (HBV)‐related liver cirrhosis (HBV‐LC) with poor prognoses. Early identification of HBV‐LC risk is essential for timely intervention. This study develops and compares nine machine learning (ML) models to predict HBV‐LC risk in CHB patients using routine clinical and laboratory data. A retrospective analysis was conducted involving 777 CHB patients, with 50.45% (392/777) progressing to HBV‐LC. Admission data consisted of 52 clinical and laboratory variables, with missing values addressed using multiple imputation. Feature selection utilized Least Absolute Shrinkage and Selection Operator (LASSO) regression and the Boruta algorithm, identifying 24 key variables. The evaluated ML models included XGBoost, logistic regression (LR), LightGBM, random forest (RF), AdaBoost, Gaussian naive Bayes (GNB), multilayer perceptron (MLP), support vector machine (SVM), and k‐nearest neighbors (KNN). The data set was partitioned into an 80% training set ( n = 621) and a 20% independent testing set ( n = 156). Cross‐validation (CV) facilitated hyperparameter tuning and internal validation of the optimal model. Performance metrics included the area under the receiver operating characteristic curve (AUC), Brier score, accuracy, sensitivity, specificity, and F1 score. The RF model demonstrated superior performance, with AUCs of 0.992 (training) and 0.907 (validation), while the reconstructed model achieved AUCs of 0.944 (training) and 0.945 (validation), maintaining an AUC of 0.863 in the testing set. Calibration curves confirmed a strong alignment between observed and predicted probabilities. Decision curve analysis indicated that the RF model provided the highest net benefit across threshold probabilities. The SHAP algorithm identified RPR, PLT, HBV DNA, ALT, and TBA as critical predictors. This interpretable ML model enhances early HBV‐LC prediction and supports clinical decision‐making in resource‐limited settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qwerdf发布了新的文献求助10
刚刚
vax完成签到 ,获得积分10
刚刚
刚刚
完美世界应助kaka7采纳,获得30
1秒前
2秒前
可了不得完成签到 ,获得积分10
2秒前
隐形曼青应助6k采纳,获得10
2秒前
八月发布了新的文献求助10
3秒前
入梦来发布了新的文献求助50
5秒前
北风发布了新的文献求助10
6秒前
大个应助qwerdf采纳,获得10
6秒前
7秒前
香蕉觅云应助小愚采纳,获得10
7秒前
7秒前
secret完成签到,获得积分10
8秒前
10秒前
10秒前
11秒前
所所应助小帅采纳,获得10
11秒前
寻悦发布了新的文献求助10
11秒前
12秒前
lucky发布了新的文献求助10
12秒前
13秒前
一个饼完成签到,获得积分10
13秒前
齐齐完成签到,获得积分10
14秒前
14秒前
14秒前
浮游应助爱喝酸奶的天真采纳,获得10
15秒前
科研痛痛痛完成签到,获得积分10
15秒前
15秒前
顾矜应助Dora采纳,获得10
16秒前
华仔应助yuanshl1985采纳,获得10
16秒前
勤劳弘文完成签到,获得积分10
17秒前
kaka7发布了新的文献求助30
19秒前
浮游应助柚子茶茶茶采纳,获得20
20秒前
6k发布了新的文献求助10
20秒前
21秒前
韶时之约发布了新的文献求助10
21秒前
八月完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307271
求助须知:如何正确求助?哪些是违规求助? 4453001
关于积分的说明 13855757
捐赠科研通 4340578
什么是DOI,文献DOI怎么找? 2383323
邀请新用户注册赠送积分活动 1378137
关于科研通互助平台的介绍 1345951