亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploiting network optimization stability for enhanced PET image denoising using deep image prior

平滑的 人工智能 计算机科学 降噪 图像质量 理论(学习稳定性) 噪音(视频) 统计噪声 模式识别(心理学) 深度学习 正电子发射断层摄影术 图像(数学) 计算机视觉 机器学习 核医学 医学
作者
Fumio Hashimoto,Kibo Ote,Yuya Onishi,Hideaki Tashima,Go Akamatsu,Yuma Iwao,M. Takahashi,Taiga Yamaya
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/add63f
摘要

Abstract [Objective]Positron emission tomography (PET) is affected by statistical noise due to constraints on tracer dose and scan duration, impacting both diagnostic performance and quantitative accuracy. While deep learning-based PET denoising methods have been used to improve image quality, they may introduce over-smoothing, which can obscure critical structural details and compromise quantitative accuracy. We propose a method for making a deep learning solution more reliable and apply it to the conditional deep image prior (DIP).
[Approach]We introduce the idea of stability information in the optimization process of conditional DIP, enabling the identification of unstable regions within the network's optimization trajectory. Our method incorporates a stability map, which is derived from multiple intermediate outputs of a moderate neural network at different optimization steps. The final denoised PET image is then obtained by computing a linear combination of the DIP output and the original reconstructed PET image, weighted by the stability map.
[Main results]We employed eight high-resolution brain PET datasets for comparison. Our method effectively reduces background noise while preserving small structure details in brain [18F]FDG PET images. Comparative analysis demonstrated that our approach outperformed existing methods in terms of peak-to-valley ratio and background noise suppression across various low-dose levels. Additionally, region-of-interest analysis confirmed that the proposed method maintains quantitative accuracy without introducing under- or over-estimation. Furthermore, we applied our method to full-dose PET data to assess its impact on image quality. The results revealed that the proposed method significantly reduced background noise while preserving the peak-to-valley ratio at a level comparable to that of unfiltered full-dose PET images. 
[Significance]The proposed method introduces a robust approach to deep learning-based PET denoising, enhancing its reliability and preserving quantitative accuracy. Furthermore, this strategy can potentially advance performance in high-sensitivity PET scanners and surpass the limit of image quality inherent to PET scanners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Lee发布了新的文献求助10
13秒前
rrrrrrry发布了新的文献求助40
15秒前
25秒前
灵灵发布了新的文献求助10
31秒前
夹心吉吉完成签到 ,获得积分10
31秒前
MaoTing完成签到,获得积分10
39秒前
顾矜应助Lee采纳,获得10
43秒前
寡妇哥完成签到 ,获得积分10
1分钟前
啦啦啦发布了新的文献求助10
1分钟前
1分钟前
蓝调爱科研应助moyueeer采纳,获得10
1分钟前
沉静茗完成签到,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
个性归尘应助科研通管家采纳,获得50
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
SciGPT应助toto采纳,获得10
1分钟前
啦啦啦完成签到 ,获得积分10
1分钟前
科研通AI5应助Cheng采纳,获得10
1分钟前
清脆的初蝶完成签到 ,获得积分10
1分钟前
1分钟前
李健的小迷弟应助suer采纳,获得10
2分钟前
张杰列夫完成签到 ,获得积分10
2分钟前
动听文轩完成签到,获得积分10
2分钟前
星辰大海应助重要纸飞机采纳,获得10
2分钟前
Akim应助hu970采纳,获得30
2分钟前
WilliamJarvis完成签到 ,获得积分10
2分钟前
vanshaw完成签到,获得积分10
2分钟前
2分钟前
动听文轩发布了新的文献求助10
2分钟前
2分钟前
2分钟前
ZJ_Jiang发布了新的文献求助10
2分钟前
2分钟前
橘络完成签到 ,获得积分10
2分钟前
2分钟前
无幻完成签到 ,获得积分10
2分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Fast method for calculating cutoff frequencies in single-mode fibres with arbitrary index profiles 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833743
求助须知:如何正确求助?哪些是违规求助? 3376192
关于积分的说明 10492292
捐赠科研通 3095778
什么是DOI,文献DOI怎么找? 1704713
邀请新用户注册赠送积分活动 820077
科研通“疑难数据库(出版商)”最低求助积分说明 771799