介电常数
物理
光学
超短脉冲
激发
光子学
不对称
谐波
皮秒
波长
光电子学
激光器
量子力学
电介质
电压
作者
Rodrigo Berté,Thomas Possmayer,Andreas Tittl,Leonardo de S. Menezes,Stefan A. Maier
标识
DOI:10.1038/s41377-025-01843-9
摘要
Abstract Resonances are usually associated with finite systems—the vibrations of clamped strings in a guitar or the optical modes in a cavity defined by mirrors. In optics, resonances may be induced in infinite continuous media via periodic modulations of their optical properties. Here we demonstrate that periodic modulations of the permittivity of a featureless thin film can also act as a symmetry-breaking mechanism, allowing the excitation of photonic quasi -bound states in the continuum ( q BICs). By interfering two ultrashort laser pulses in the unbounded film, transient resonances can be tailored through different parameters of the pump beams. We show that the system offers resonances tunable in wavelength and quality-factor, and spectrally selective enhancement of third-harmonic generation. Due to a fast decay of the permittivity asymmetry, we observe ultrafast dynamics, enabling time-selective near-field enhancement with picosecond precision. Optically induced permittivity asymmetries may be exploited in on-demand weak to ultrastrong light-matter interaction regimes and light manipulation at dynamically chosen wavelengths in lithography-free metasurfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI