Transformer-Based Recognition of Activities of Daily Living from Wearable Sensor Data

活动识别 日常生活活动 计算机科学 变压器 可穿戴计算机 人工智能 机器学习 辅助生活 嵌入式系统 工程类 医学 心理学 护理部 电压 精神科 电气工程
作者
Gabriela Augustinov,Muhammad Adeel Nisar,Frédéric Li,Amir Tabatabaei,Marcin Grzegorzek,Keywan Sohrabi,Sebastian Fudickar
标识
DOI:10.1145/3558884.3558895
摘要

Smart support systems for the recognition of Activities of Daily Living (ADLs) can help elderly people live independently for longer improving their standard of living. Many machine learning approaches have been proposed lately for Human Activity Recognition (HAR), including elaborated networks that contain convolutional, recurrent, and attentive layers. The ubiquity of wearable devices has provided an increasing amount of time-series data that can be used for such applications in an unobtrusive manner. But there are not many studies on the performance of the attention-based Transformer model in HAR, especially not for complex activities such as ADLs. This work implements and evaluates the novel self-attention Transformer model for the classification of ADLs and compares it to the already well-established approach of recurrent Long-Short Term Memory (LSTM) networks. The proposed method is a two-level hierarchical model, in which atomic activities are initially recognized in the first step and their probability scores are extracted and utilized for the Transformer-based classification of seven more complex ADLs in the second step. The Transformer is used at the second step to classify seven ADLs. Our results show that the Transformer model reaches the same performance and even outperforms LSTM networks cleary in the subject-dependent configuration (73.36 % and 69.09 %), while relying only on attention-mechanism to depict global dependencies between input and output without the need to use any recurrence. The proposed model was tested using two different segment lengths, indicating its effectiveness in learning long-range dependencies of shorter actions in complex activities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eliza发布了新的文献求助10
刚刚
充电宝应助yyy0820采纳,获得10
刚刚
科研小白完成签到,获得积分10
刚刚
波比不菜完成签到,获得积分10
1秒前
ExcuseMEEE完成签到 ,获得积分10
1秒前
领导范儿应助周周采纳,获得10
2秒前
5秒前
彭于晏应助onmyway采纳,获得30
7秒前
8秒前
8秒前
爆米花应助619805092采纳,获得10
8秒前
甜蜜的楷瑞应助活力鑫磊采纳,获得10
9秒前
9秒前
mkmimii发布了新的文献求助10
10秒前
今后应助傅宛白采纳,获得10
10秒前
甜蜜的楷瑞应助花生日记采纳,获得10
10秒前
10秒前
11秒前
SciGPT应助你hao采纳,获得10
11秒前
pbf完成签到,获得积分10
12秒前
123发布了新的文献求助10
12秒前
DRszy发布了新的文献求助10
13秒前
13秒前
15秒前
wxd发布了新的文献求助10
16秒前
顺利的飞荷完成签到,获得积分0
17秒前
英姑应助阳光的伊采纳,获得10
18秒前
为医消得人憔悴完成签到 ,获得积分10
18秒前
阳佟乐瑶发布了新的文献求助10
19秒前
你hao发布了新的文献求助10
19秒前
mint发布了新的文献求助10
21秒前
Hello应助xiaoshuwang采纳,获得10
21秒前
认真的问枫完成签到 ,获得积分10
24秒前
王一添关注了科研通微信公众号
24秒前
25秒前
25秒前
26秒前
28秒前
烂漫向卉完成签到,获得积分10
28秒前
29秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4047090
求助须知:如何正确求助?哪些是违规求助? 3584921
关于积分的说明 11393661
捐赠科研通 3312285
什么是DOI,文献DOI怎么找? 1822513
邀请新用户注册赠送积分活动 894507
科研通“疑难数据库(出版商)”最低求助积分说明 816316