Two-Dimensional Oscillatory Neural Network Based on Room-Temperature Charge-Density-Wave Devices

晶体管 拓扑(电路) 材料科学 光电子学 人工神经网络 电气工程 电压 物理 计算机科学 凝聚态物理 量子力学 工程类 人工智能
作者
Alexander Khitun,Guanxiong Liu,Alexander A. Balandin
出处
期刊:IEEE Transactions on Nanotechnology [Institute of Electrical and Electronics Engineers]
卷期号:16 (5): 860-867 被引量:43
标识
DOI:10.1109/tnano.2017.2716845
摘要

We propose an oscillatory neural network implemented with two-dimensional (2-D) tantalum disulfide devices operating in the change density wave regime at room temperature. An elementary cell of the network consists of two 1T-TaS 2 devices connected in series. Such a cell has a constant output and oscillatory states. All cells have the same bias voltage. There is a constant current flowing through the cell in the constant output mode. The oscillations occur at a certain bias voltage due to the electrical-field triggered metal-to-insulator transition owing to the changes in the charge-density-wave phase in the 1T-TaS 2 channel. Two 1T-TaS 2 devices oscillate out-of-phase when one of the devices is in the insulator phase while the other one is in the metallic state. The nearest-neighbor cells are coupled via graphene transistors. The cells are resistively coupled if the graphene transistor is in the on state while they are capacitively coupled if the transistor is in the off state. The operation of the oscillatory neural network is simulated numerically for the 30 × 30 node network. We present the examples of pattern recognition on a template with the fixed coupling among the near-neighbor cells. We also present the results of our numerical modeling mimicking the Game of Life in the network with the time-varying coupling. The 2-D 1T-TaS 2 devices, utilized in the network, offer a unique combination of properties such as scalability, high operational frequency, fast synchronization speed, and radiation hardness, which makes them promising for both consumer electronic and defense applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文耳东完成签到,获得积分10
1秒前
1秒前
ann28251发布了新的文献求助10
2秒前
2秒前
漂亮白枫发布了新的文献求助10
3秒前
小马甲应助容与采纳,获得10
3秒前
屁王完成签到,获得积分10
3秒前
Zoe完成签到 ,获得积分10
4秒前
LL完成签到 ,获得积分10
4秒前
5秒前
7秒前
黍姐想你了完成签到,获得积分10
8秒前
外星人发布了新的文献求助10
8秒前
guohuafan完成签到,获得积分10
8秒前
9秒前
之星君完成签到,获得积分10
10秒前
10秒前
顾矜应助Pixiu_Bixie采纳,获得10
10秒前
王哈哈完成签到,获得积分10
11秒前
11秒前
Lucas应助漂亮白枫采纳,获得10
11秒前
害怕的鞯完成签到,获得积分10
12秒前
hekai发布了新的文献求助10
14秒前
orchid完成签到,获得积分10
15秒前
NLJY完成签到,获得积分10
16秒前
16秒前
顾矜应助无心的星月采纳,获得30
17秒前
heheha完成签到,获得积分10
17秒前
害怕的鞯发布了新的文献求助10
17秒前
墨枝发布了新的文献求助10
19秒前
Dding完成签到,获得积分10
19秒前
19秒前
20秒前
科研通AI6应助白翊辰采纳,获得10
20秒前
淡定发布了新的文献求助10
23秒前
zhu完成签到,获得积分10
24秒前
Zx_1993应助hekai采纳,获得10
25秒前
浮游应助端庄的小蝴蝶采纳,获得10
26秒前
科研通AI6应助彩虹捕手采纳,获得10
26秒前
勤恳数据线完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4915610
求助须知:如何正确求助?哪些是违规求助? 4189461
关于积分的说明 13011173
捐赠科研通 3958743
什么是DOI,文献DOI怎么找? 2170315
邀请新用户注册赠送积分活动 1188562
关于科研通互助平台的介绍 1096426