An integrated AI model to improve diagnostic accuracy of ultrasound and output known risk features in suspicious thyroid nodules

医学 神经组阅片室 放射科 超声波 甲状腺结节 介入放射学 甲状腺癌 甲状腺 组织病理学 病理 内科学 精神科 神经学
作者
Juan Wang,Jue Jiang,Dong Zhang,Yaozhong Zhang,Long Guo,Yusheng Jiang,Shaoyi Du,Qi Zhou
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (3): 2120-2129 被引量:35
标识
DOI:10.1007/s00330-021-08298-7
摘要

From the viewpoint of ultrasound (US) physicians, an ideal thyroid US computer-assisted diagnostic (CAD) system for thyroid cancer should perform well in suspicious thyroid nodules with atypical risk features and be able to output explainable results. This study aims to develop an explainable US CAD model for suspicious thyroid nodules.A total of 2992 solid or almost-solid thyroid nodules were analyzed retrospectively. All nodules had pathological results (1070 malignancies and 1992 benignities) confirmed by ultrasound-guided fine-needle aspiration cytology and histopathology after thyroidectomy. A deep learning model (ResNet50) and a multiple risk features learning ensemble model (XGBoost) were used to train the US images of 2794 thyroid nodules. Then, an integrated AI model was generated by combining both models. The diagnostic accuracies of the three AI models (ResNet50, XGBoost, and the integrated model) were predicted in a testing set including 198 thyroid nodules and compared to the diagnostic efficacy of five ultrasonographers.The accuracy of the integrated model was 76.77%, while the mean accuracy of the ultrasonographers was 68.38%. Of the risk features, microcalcifications showed the highest contribution to the diagnosis of malignant nodules.The integrated AI model in our study can improve the diagnostic accuracy of suspicious thyroid nodules and output the known risk features simultaneously, thus aiding in training young ultrasonographers by linking the explainable results to their clinical experience and advancing the acceptance of AI diagnosis for thyroid cancer in clinical practice.• We developed an artificial intelligence (AI) diagnosis model based on both deep learning and multiple risk feature ensemble learning methods. • The AI diagnosis model showed higher diagnostic accuracy for suspicious thyroid nodules than ultrasonographers. • The AI diagnosis model showed partial explainability by outputting the known risk features, thus aiding young ultrasonic doctors in increasing the diagnostic level for thyroid cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行动完成签到,获得积分10
刚刚
orixero应助虚心的芹采纳,获得10
1秒前
邓博完成签到,获得积分10
2秒前
典雅浩轩完成签到,获得积分10
2秒前
星辰完成签到 ,获得积分0
4秒前
东方诩完成签到,获得积分10
4秒前
AslenK完成签到,获得积分10
5秒前
研研研完成签到,获得积分10
6秒前
yeurekar完成签到,获得积分10
8秒前
縤雨完成签到 ,获得积分10
8秒前
钱钱完成签到,获得积分10
9秒前
调皮醉波完成签到 ,获得积分10
10秒前
跳跃的迎荷完成签到 ,获得积分10
10秒前
hhhhhha完成签到,获得积分10
11秒前
muBai嘎嘎牛完成签到,获得积分10
11秒前
十八完成签到,获得积分10
12秒前
晓晓完成签到,获得积分10
12秒前
12秒前
荀煜祺完成签到,获得积分10
13秒前
王玉完成签到 ,获得积分10
13秒前
jiyixiao1完成签到,获得积分10
14秒前
勤恳易真完成签到,获得积分10
15秒前
linkyi完成签到,获得积分10
17秒前
生动的发带完成签到 ,获得积分10
17秒前
对对对完成签到 ,获得积分10
17秒前
阿巴阿巴完成签到,获得积分10
17秒前
轻歌水越完成签到 ,获得积分10
18秒前
金子完成签到,获得积分10
19秒前
李爱国应助加湿器采纳,获得10
19秒前
呆萌乐蕊完成签到 ,获得积分10
20秒前
陨落的繁星完成签到,获得积分10
22秒前
清新的易真完成签到,获得积分10
23秒前
陈志刚完成签到,获得积分10
24秒前
FashionBoy应助lingyang采纳,获得10
25秒前
勤劳弘文完成签到,获得积分10
27秒前
别闹闹完成签到 ,获得积分10
28秒前
jjh完成签到,获得积分20
29秒前
Edwin完成签到 ,获得积分10
31秒前
31秒前
在水一方应助Chensir采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5175086
求助须知:如何正确求助?哪些是违规求助? 4364428
关于积分的说明 13586706
捐赠科研通 4213528
什么是DOI,文献DOI怎么找? 2311076
邀请新用户注册赠送积分活动 1310068
关于科研通互助平台的介绍 1258103