An integrated AI model to improve diagnostic accuracy of ultrasound and output known risk features in suspicious thyroid nodules

医学 神经组阅片室 放射科 超声波 甲状腺结节 介入放射学 甲状腺癌 甲状腺 组织病理学 病理 内科学 神经学 精神科
作者
Juan Wang,Jue Jiang,Dong Zhang,Yaozhong Zhang,Long Guo,Yusheng Jiang,Shaoyi Du,Qi Zhou
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (3): 2120-2129 被引量:28
标识
DOI:10.1007/s00330-021-08298-7
摘要

From the viewpoint of ultrasound (US) physicians, an ideal thyroid US computer-assisted diagnostic (CAD) system for thyroid cancer should perform well in suspicious thyroid nodules with atypical risk features and be able to output explainable results. This study aims to develop an explainable US CAD model for suspicious thyroid nodules.A total of 2992 solid or almost-solid thyroid nodules were analyzed retrospectively. All nodules had pathological results (1070 malignancies and 1992 benignities) confirmed by ultrasound-guided fine-needle aspiration cytology and histopathology after thyroidectomy. A deep learning model (ResNet50) and a multiple risk features learning ensemble model (XGBoost) were used to train the US images of 2794 thyroid nodules. Then, an integrated AI model was generated by combining both models. The diagnostic accuracies of the three AI models (ResNet50, XGBoost, and the integrated model) were predicted in a testing set including 198 thyroid nodules and compared to the diagnostic efficacy of five ultrasonographers.The accuracy of the integrated model was 76.77%, while the mean accuracy of the ultrasonographers was 68.38%. Of the risk features, microcalcifications showed the highest contribution to the diagnosis of malignant nodules.The integrated AI model in our study can improve the diagnostic accuracy of suspicious thyroid nodules and output the known risk features simultaneously, thus aiding in training young ultrasonographers by linking the explainable results to their clinical experience and advancing the acceptance of AI diagnosis for thyroid cancer in clinical practice.• We developed an artificial intelligence (AI) diagnosis model based on both deep learning and multiple risk feature ensemble learning methods. • The AI diagnosis model showed higher diagnostic accuracy for suspicious thyroid nodules than ultrasonographers. • The AI diagnosis model showed partial explainability by outputting the known risk features, thus aiding young ultrasonic doctors in increasing the diagnostic level for thyroid cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
刘文思发布了新的文献求助10
5秒前
5秒前
赘婿应助科研通管家采纳,获得10
6秒前
xyy发布了新的文献求助10
7秒前
Dou完成签到,获得积分10
7秒前
闪闪含巧完成签到,获得积分10
8秒前
shouyu29应助华东偏振王采纳,获得10
8秒前
haoduoyu发布了新的文献求助10
9秒前
10秒前
wishait发布了新的文献求助20
11秒前
传奇3应助芋芋采纳,获得10
11秒前
12秒前
Hello应助可靠从云采纳,获得10
13秒前
小紫薯完成签到 ,获得积分10
14秒前
14秒前
蟹子完成签到 ,获得积分10
15秒前
jzyy发布了新的文献求助10
16秒前
hanliulaixi发布了新的文献求助10
17秒前
微醺潮汐完成签到,获得积分10
18秒前
20秒前
游a完成签到,获得积分10
21秒前
芋芋发布了新的文献求助10
23秒前
丘比特应助wishait采纳,获得50
23秒前
24秒前
大模型应助lin采纳,获得10
24秒前
充电宝应助lin采纳,获得50
24秒前
32秒前
nanana发布了新的文献求助10
32秒前
yoyo完成签到,获得积分20
33秒前
35秒前
华仔应助sn采纳,获得10
35秒前
郭一完成签到,获得积分10
35秒前
Akim应助jie采纳,获得10
36秒前
随遇而安应助龙弟弟采纳,获得10
36秒前
38秒前
CodeCraft应助yoyo采纳,获得10
39秒前
39秒前
科研通AI2S应助Ranger_M采纳,获得10
42秒前
斯文败类应助jixuzhuixun采纳,获得10
43秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331224
关于积分的说明 10250683
捐赠科研通 3046706
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801055
科研通“疑难数据库(出版商)”最低求助积分说明 759979