已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Three-Dimensional Convolutional Neural Network Model for Early Detection of Pine Wilt Disease Using UAV-Based Hyperspectral Images

高光谱成像 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 残余物 遥感 算法 地理
作者
Runsheng Yu,Youqing Luo,Haonan Li,Liyuan Yang,Huaguo Huang,Linfeng Yu,Lili Ren
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (20): 4065-4065 被引量:37
标识
DOI:10.3390/rs13204065
摘要

As one of the most devastating disasters to pine forests, pine wilt disease (PWD) has caused tremendous ecological and economic losses in China. An effective way to prevent large-scale PWD outbreaks is to detect and remove the damaged pine trees at the early stage of PWD infection. However, early infected pine trees do not show obvious changes in morphology or color in the visible wavelength range, making early detection of PWD tricky. Unmanned aerial vehicle (UAV)-based hyperspectral imagery (HI) has great potential for early detection of PWD. However, the commonly used methods, such as the two-dimensional convolutional neural network (2D-CNN), fail to simultaneously extract and fully utilize the spatial and spectral information, whereas the three-dimensional convolutional neural network (3D-CNN) is able to collect this information from raw hyperspectral data. In this paper, we applied the residual block to 3D-CNN and constructed a 3D-Res CNN model, the performance of which was then compared with that of 3D-CNN, 2D-CNN, and 2D-Res CNN in identifying PWD-infected pine trees from the hyperspectral images. The 3D-Res CNN model outperformed the other models, achieving an overall accuracy (OA) of 88.11% and an accuracy of 72.86% for detecting early infected pine trees (EIPs). Using only 20% of the training samples, the OA and EIP accuracy of 3D-Res CNN can still achieve 81.06% and 51.97%, which is superior to the state-of-the-art method in the early detection of PWD based on hyperspectral images. Collectively, 3D-Res CNN was more accurate and effective in early detection of PWD. In conclusion, 3D-Res CNN is proposed for early detection of PWD in this paper, making the prediction and control of PWD more accurate and effective. This model can also be applied to detect pine trees damaged by other diseases or insect pests in the forest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Dasiliy发布了新的文献求助10
2秒前
2秒前
无我发布了新的文献求助10
5秒前
babaoriley1发布了新的文献求助10
7秒前
gao完成签到,获得积分10
9秒前
one完成签到,获得积分20
10秒前
闪闪小小完成签到 ,获得积分10
12秒前
wxl完成签到 ,获得积分10
13秒前
耶?发布了新的文献求助10
17秒前
SYLH应助魏伯安采纳,获得10
18秒前
LabRat完成签到 ,获得积分10
19秒前
小丸子发布了新的文献求助10
21秒前
shinysparrow应助LR采纳,获得150
22秒前
领导范儿应助夜行采纳,获得10
25秒前
雨林完成签到,获得积分10
26秒前
27秒前
耶?完成签到,获得积分10
27秒前
内向南风完成签到 ,获得积分10
27秒前
Ava应助爱听歌笑寒采纳,获得10
30秒前
30秒前
tianxiong发布了新的文献求助10
30秒前
34秒前
Hello应助榴下晨光采纳,获得10
35秒前
一一应助猪猪hero采纳,获得10
35秒前
xr完成签到 ,获得积分10
36秒前
37秒前
大媛大靳吃地瓜完成签到,获得积分10
38秒前
小眼儿完成签到 ,获得积分10
39秒前
40秒前
41秒前
xuan发布了新的文献求助10
42秒前
火翟丰丰山心完成签到,获得积分10
42秒前
刺五加发布了新的文献求助10
43秒前
飞逝的快乐时光完成签到 ,获得积分10
43秒前
43秒前
Frenda完成签到,获得积分20
43秒前
44秒前
不懈奋进应助科研通管家采纳,获得30
44秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827093
求助须知:如何正确求助?哪些是违规求助? 3369359
关于积分的说明 10455705
捐赠科研通 3089006
什么是DOI,文献DOI怎么找? 1699560
邀请新用户注册赠送积分活动 817411
科研通“疑难数据库(出版商)”最低求助积分说明 770217