A Survey on Bias and Fairness in Machine Learning

计算机科学 人工智能 分类学(生物学) 数据科学 商业化 人工智能应用 工作(物理) 机器学习 政治学 植物 机械工程 生物 工程类 法学
作者
Ninareh Mehrabi,Fred Morstatter,Nripsuta Ani Saxena,Kristina Lerman,Aram Galstyan
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:54 (6): 1-35 被引量:3445
标识
DOI:10.1145/3457607
摘要

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
坚强怀绿发布了新的文献求助20
1秒前
2秒前
四喜丸子完成签到,获得积分10
2秒前
2秒前
小小完成签到 ,获得积分10
2秒前
浮生若梦发布了新的文献求助20
3秒前
光亮向露完成签到,获得积分10
3秒前
4秒前
wanci应助就叫柠檬吧采纳,获得10
4秒前
科目三应助正直寄云采纳,获得10
4秒前
mf发布了新的文献求助10
5秒前
5秒前
5秒前
天天向上完成签到,获得积分10
6秒前
6秒前
Z小姐发布了新的文献求助20
7秒前
大块发布了新的文献求助10
7秒前
难过颦发布了新的文献求助10
7秒前
8秒前
学术猩猩发布了新的文献求助10
8秒前
8秒前
NexusExplorer应助司马千筹采纳,获得10
9秒前
zz发布了新的文献求助10
9秒前
11秒前
52251013106发布了新的文献求助10
11秒前
天天向上发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
善学以致用应助董竹君采纳,获得10
14秒前
14秒前
小蘑菇应助锅包肉采纳,获得10
15秒前
16秒前
在水一方应助时尚的青丝采纳,获得10
16秒前
合适冰棍发布了新的文献求助10
17秒前
深情安青应助长情洙采纳,获得10
17秒前
研友_yLpYkn完成签到,获得积分10
18秒前
积极的凌波完成签到,获得积分20
19秒前
19秒前
领导范儿应助Q同学采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003103
求助须知:如何正确求助?哪些是违规求助? 4247982
关于积分的说明 13234780
捐赠科研通 4046924
什么是DOI,文献DOI怎么找? 2214060
邀请新用户注册赠送积分活动 1224112
关于科研通互助平台的介绍 1144386