A Survey on Bias and Fairness in Machine Learning

计算机科学 人工智能 分类学(生物学) 数据科学 商业化 人工智能应用 工作(物理) 机器学习 政治学 植物 机械工程 生物 工程类 法学
作者
Ninareh Mehrabi,Fred Morstatter,Nripsuta Ani Saxena,Kristina Lerman,Aram Galstyan
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:54 (6): 1-35 被引量:3176
标识
DOI:10.1145/3457607
摘要

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
vil关注了科研通微信公众号
1秒前
共享精神应助杜若采纳,获得10
1秒前
万能图书馆应助zys采纳,获得10
1秒前
拼搏的无施应助乐观小之采纳,获得10
2秒前
3秒前
无花果应助lulala采纳,获得10
3秒前
白色蒲公英完成签到,获得积分10
5秒前
方知完成签到,获得积分10
5秒前
6秒前
6秒前
似水流年发布了新的文献求助10
7秒前
lxy完成签到,获得积分10
7秒前
7秒前
三yuyu发布了新的文献求助10
7秒前
LHM发布了新的文献求助10
8秒前
reeeveb发布了新的文献求助10
9秒前
Dirsch发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
dpp发布了新的文献求助10
11秒前
11秒前
隐形曼青应助8hua采纳,获得10
11秒前
12秒前
12秒前
13秒前
14秒前
clm完成签到 ,获得积分10
14秒前
lily2025完成签到,获得积分10
14秒前
16秒前
16秒前
负负得正发布了新的文献求助10
16秒前
且歌且行完成签到 ,获得积分10
17秒前
三yuyu完成签到,获得积分10
18秒前
18秒前
威武的酒窝完成签到,获得积分10
19秒前
刘若鑫发布了新的文献求助10
19秒前
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4187596
求助须知:如何正确求助?哪些是违规求助? 3723508
关于积分的说明 11732655
捐赠科研通 3401070
什么是DOI,文献DOI怎么找? 1866368
邀请新用户注册赠送积分活动 923106
科研通“疑难数据库(出版商)”最低求助积分说明 834407