Physics Informed Deep Reinforcement Learning for Aircraft Conflict Resolution

强化学习 冲突解决 趋同(经济学) 计算机科学 人工智能 航向(导航) 物理定律 马尔可夫决策过程 人工神经网络 机器学习 数学 物理 工程类 马尔可夫过程 航空航天工程 政治学 法学 经济 统计 量子力学 经济增长
作者
Peng Zhao,Yongming Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 8288-8301 被引量:29
标识
DOI:10.1109/tits.2021.3077572
摘要

A novel method for aircraft conflict resolution in air traffic management (ATM) using physics informed deep reinforcement learning (RL) is proposed. The motivation is to integrate prior physics understanding and model in the learning algorithm to facilitate the optimal policy searching and to present human-explainable results for display and decision-making. First, the information of intruders' quantity, speeds, heading angles, and positions are integrated into an image using the solution space diagram (SSD), which is used in the ATM for conflict detection and mitigation. The SSD serves as the prior physics knowledge from the ATM domain which is the input features for learning. A convolution neural network is used with the SSD images for the deep reinforcement learning. Next, an actor-critic network is constructed to learn conflict resolution policy. Several numerical examples are used to illustrate the proposed methodology. Both discrete and continuous RL are explored using the proposed concept of physics informed learning. A detailed comparison and discussion of the proposed algorithm and classical RL-based conflict resolution is given. The proposed approach is able to handle arbitrary number of intruders and also shows faster convergence behavior due to the encoded prior physics understanding. In addition, the learned optimal policy is also beneficial for proper display to support decision-making. Several major conclusions and future work are presented based on the current investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助查文献的大猫采纳,获得10
1秒前
直率的璎完成签到,获得积分10
2秒前
wzswzs发布了新的文献求助10
2秒前
自觉沛文完成签到,获得积分10
3秒前
开心最重要完成签到,获得积分10
3秒前
zhang005on发布了新的文献求助10
4秒前
美丽的凌蝶完成签到,获得积分10
4秒前
5秒前
5秒前
李怀玉完成签到,获得积分10
5秒前
瘦瘦小萱完成签到 ,获得积分10
5秒前
安的沛白完成签到,获得积分10
6秒前
FX发布了新的文献求助10
6秒前
三里墩头应助778采纳,获得10
6秒前
yy完成签到,获得积分10
6秒前
6秒前
虚拟的以南完成签到,获得积分10
7秒前
7秒前
皮皮蛙完成签到,获得积分10
7秒前
彭于晏应助玛璃鸶采纳,获得10
8秒前
黄函发布了新的文献求助10
8秒前
Ava应助cccttt采纳,获得10
8秒前
coconut完成签到,获得积分10
9秒前
wendinfgmei发布了新的文献求助10
9秒前
香蕉觅云应助剪影改采纳,获得10
10秒前
记忆里的阳光完成签到,获得积分10
10秒前
dachengzi完成签到,获得积分10
10秒前
Orange应助酒酿萝卜皮采纳,获得10
10秒前
_是小满完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
慕青应助不知道叫啥采纳,获得10
12秒前
12秒前
12秒前
Alina1874完成签到,获得积分10
12秒前
香蕉觅云应助yusong采纳,获得10
13秒前
李婷婷完成签到,获得积分10
13秒前
Garry完成签到,获得积分10
13秒前
平城落叶完成签到,获得积分10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785297
求助须知:如何正确求助?哪些是违规求助? 3330886
关于积分的说明 10248776
捐赠科研通 3046307
什么是DOI,文献DOI怎么找? 1671979
邀请新用户注册赠送积分活动 800924
科研通“疑难数据库(出版商)”最低求助积分说明 759881