Machine learning-based estimation of ground-level NO2 concentrations over China

环境科学 地平面 地面臭氧 北京 城市群 污染 长江 三角洲 对流层 中国 大气科学 气象学 地理 空气质量指数 地质学 工程类 航空航天工程 考古 建筑工程 生物 生态学 一楼
作者
Yulei Chi,Meng Fan,Chuanfeng Zhao,Yikun Yang,Hao Fan,Xingchuan Yang,Jie Yang,Jinhua Tao
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:807: 150721-150721 被引量:54
标识
DOI:10.1016/j.scitotenv.2021.150721
摘要

Most current scientific research on NO2 remote sensing focuses on tropospheric NO2 column concentrations rather than ground-level NO2 concentrations; however, ground-level NO2 concentrations are more related to anthropogenic emissions and human health. This study proposes a machine learning estimation method for retrieving the ground-level NO2 concentrations throughout China based on the tropospheric NO2 column concentrations from the TROPOspheric Monitoring Instrument (TROPOMI) and multisource geographic data from 2018 to 2020. This method adopts the XGBoost machine learning model characterized by a strong fitting ability and complex model structure, which can explain the complex nonlinear and high-order relationships between ground-measured NO2 and its influencing factors. The R2 values between the retrievals and the validation and test datasets are 0.67 and 0.73, respectively, which suggests that the proposed method can reliably retrieve the ground-level NO2 concentrations across China. The distribution characteristics, seasonal variations and interannual differences in ground-level NO2 concentrations are further analyzed based on the retrieval results, demonstrating that the ground-level NO2 concentrations exhibit significant geographical and seasonal variations, with high concentrations in winter and low concentrations in summer, and the highly polluted regions are concentrated mainly in Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), Cheng-Yu District (CY) and other urban agglomerations. Finally, the interannual variation in the ground-level NO2 concentrations indicates that pollution decreased continuously from 2018 to 2020.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
wangxiangqin完成签到 ,获得积分10
1秒前
风中的青完成签到,获得积分10
1秒前
急需文献开题的研一肿瘤学牛马完成签到,获得积分20
2秒前
HEYATIAN完成签到 ,获得积分10
3秒前
小蘑菇应助称心的灵枫采纳,获得10
3秒前
rnanoda发布了新的文献求助10
3秒前
云上初感完成签到,获得积分10
3秒前
Dd18753801528完成签到,获得积分10
3秒前
3秒前
4秒前
gxc完成签到,获得积分20
4秒前
夜小娘完成签到,获得积分10
6秒前
6秒前
xcc完成签到,获得积分10
7秒前
7秒前
昭昭完成签到,获得积分10
8秒前
科研通AI2S应助tianliyan采纳,获得10
8秒前
sakura发布了新的文献求助10
8秒前
于渔鱼关注了科研通微信公众号
11秒前
梅普露关注了科研通微信公众号
11秒前
雪山飞龙发布了新的文献求助10
12秒前
吴亚运发布了新的文献求助10
12秒前
13秒前
魔幻毛豆完成签到,获得积分10
14秒前
14秒前
16秒前
夏侯幻梦发布了新的文献求助10
16秒前
Jasper应助烨无殇采纳,获得10
16秒前
群青完成签到 ,获得积分10
16秒前
随心完成签到,获得积分10
17秒前
清嘉完成签到,获得积分10
17秒前
克莱完成签到,获得积分10
17秒前
18秒前
Owen应助影zi采纳,获得10
18秒前
大模型应助聪慧跳跳糖采纳,获得10
19秒前
20秒前
20秒前
mugglea发布了新的文献求助10
20秒前
大个应助随心采纳,获得10
21秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499823
求助须知:如何正确求助?哪些是违规求助? 4596445
关于积分的说明 14454913
捐赠科研通 4529733
什么是DOI,文献DOI怎么找? 2482170
邀请新用户注册赠送积分活动 1466094
关于科研通互助平台的介绍 1438920