理查兹方程
反问题
地下水
地下水流
应用数学
流量(数学)
偏微分方程
搭配(遥感)
反向
人工神经网络
包气带
数学优化
牙石(牙科)
计算机科学
地质学
数学分析
数学
人工智能
岩土工程
含水层
机器学习
几何学
医学
牙科
含水量
作者
Ivan Depina,Saket Jain,Sigurdur Mar Valsson,Hrvoje Gotovac
标识
DOI:10.1080/17499518.2021.1971251
摘要
This paper investigates the application of Physics-Informed Neural Networks (PINNs) to inverse problems in unsaturated groundwater flow. PINNs are applied to the types of unsaturated groundwater flow problems modelled with the Richards partial differential equation and the van Genuchten constitutive model. The inverse problem is formulated here as a problem with known or measured values of the solution to the Richards equation at several spatio-temporal instances, and unknown values of solution at the rest of the problem domain and unknown parameters of the van Genuchten model. PINNs solve inverse problems by reformulating the loss function of a deep neural network such that it simultaneously aims to satisfy the measured values and the unknown values at a set of collocation points distributed across the problem domain. The novelty of the paper originates from the development of PINN formulations for the Richards equation that requires training of a single neural network. The results demonstrate that PINNs are capable of efficiently solving the inverse problem with relatively accurate approximation of the solution to the Richards equation and estimates of the van Genuchten model parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI