A Novel Method for SoH Prediction of Batteries Based on Stacked LSTM with Quick Charge Data

电池(电) 健康状况 计算机科学 动力传动系统 电池组 过程(计算) 汽车工程 航程(航空) 荷电状态 恒流 电压 电气工程 功率(物理) 材料科学 工程类 扭矩 物理 量子力学 复合材料 热力学 操作系统
作者
Uğur Yayan,Abdullah Taha Arslan,Hikmet Yücel
出处
期刊:Applied Artificial Intelligence [Taylor & Francis]
卷期号:35 (6): 421-439 被引量:46
标识
DOI:10.1080/08839514.2021.1901033
摘要

The transition to non-fossil fuels brings with its basic challenges in battery technologies. Due to their efficiency, one of the areas where Li-ion batteries are widely used is electric vehicles (EVs). Range estimation is one of the most important needs in a battery-powered electric vehicle (BEV). The range of BEVs directly depends on battery capacity and powertrain efficiency. Although the electrical performance of Li-ion batteries has significantly improved, it is still not possible to overcome their capacity degradation with aging. State of charge (SoC) and state of health (SoH) are two important measures for a battery. With accurate SoC and SoH estimates, a battery management system can prevent each cell in the battery pack from over-charging or over-discharging, and prolongs the life of the entire pack. The novel idea in this study is to estimate SoH with the data collected during the battery charging process. The most needed moment for SoH is the end of the charging process. With this information, the user can plan the job that the battery will be used with. In order to meet this need, a specially designed deep neural network (stacked LSTM) is trained and tested using measurements only from constant current charging phase of quick charge process. The test results show that this method is effectively applicable to quick chargers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
妮妮发布了新的文献求助10
刚刚
李键刚发布了新的文献求助10
1秒前
妇产科医生完成签到 ,获得积分10
3秒前
4秒前
小樹发布了新的文献求助30
4秒前
一株多肉完成签到,获得积分10
5秒前
5秒前
6秒前
Lou完成签到,获得积分10
6秒前
11发布了新的文献求助10
7秒前
旭日发布了新的文献求助10
7秒前
zz完成签到,获得积分10
7秒前
BIT_lulu完成签到,获得积分10
9秒前
9秒前
shezhinicheng发布了新的文献求助10
9秒前
276868sxzz发布了新的文献求助10
9秒前
yusuf完成签到,获得积分10
9秒前
爆米花应助梨涡远点采纳,获得10
10秒前
蒜头发布了新的文献求助10
10秒前
李健的小迷弟应助Susan采纳,获得10
12秒前
隐形曼青应助欣慰的白羊采纳,获得10
12秒前
充电宝应助11采纳,获得10
14秒前
大模型应助徐梦曦采纳,获得10
15秒前
BENRONG发布了新的文献求助10
15秒前
池暮江吟春完成签到,获得积分0
16秒前
高高一鸣完成签到,获得积分10
16秒前
17秒前
苗玉完成签到,获得积分10
19秒前
19秒前
22秒前
FashionBoy应助旭日采纳,获得10
22秒前
高高一鸣关注了科研通微信公众号
23秒前
23秒前
zwww完成签到,获得积分10
23秒前
24秒前
24秒前
思源应助科研通管家采纳,获得10
24秒前
24秒前
chen发布了新的文献求助10
25秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828040
求助须知:如何正确求助?哪些是违规求助? 3370323
关于积分的说明 10462906
捐赠科研通 3090294
什么是DOI,文献DOI怎么找? 1700312
邀请新用户注册赠送积分活动 817813
科研通“疑难数据库(出版商)”最低求助积分说明 770458