A Potential Role for Multiple Tissue Kallikrein Serine Proteases in Epidermal Desquamation

脱皮 激肽释放酶 蛋白酵素 丝氨酸 化学 生物化学 医学 皮肤病科
作者
Carla A. Borgoño,Iacovos P. Michael,Nahoko Komatsu,Arumugam Jayakumar,Ravi Kapadia,Gary L. Clayman,Georgia Sotiropoulou,Eleftherios P. Diamandis
出处
期刊:Journal of Biological Chemistry [Elsevier]
卷期号:282 (6): 3640-3652 被引量:274
标识
DOI:10.1074/jbc.m607567200
摘要

Desquamation of the stratum corneum is a serine protease-dependent process. Two members of the human tissue kallikrein (KLK) family of (chymo)tryptic-like serine proteases, KLK5 and KLK7, are implicated in desquamation by digestion of (corneo)desmosomes and inhibition by desquamation-related serine protease inhibitors (SPIs). However, the epidermal localization and specificity of additional KLKs also supports a role for these enzymes in desquamation. This study aims to delineate the probable contribution of KLK1, KLK5, KLK6, KLK13, and KLK14 to desquamation by examining their interactions, in vitro, with: 1) colocalized SPI, lympho-epithelial Kazal-type-related inhibitor (LEKTI, four recombinant fragments containing inhibitory domains 1–6 (rLEKTI(1–6)), domains 6–8 and partial domain 9 (rLEKTI(6–9′)), domains 9–12 (rLEKTI(9–12)), and domains 12–15 (rLEKTI(12–15)), secretory leukocyte protease inhibitor, and elafin and 2) their ability to digest the (corneo)desmosomal cadherin, desmoglein 1. KLK1 was not inhibited by any SPI tested. KLK5, KLK6, KLK13, and KLK14 were potently inhibited by rLEKTI(1–6), rLEKTI(6–9′), and rLEKTI(9–12) with Ki values in the range of 2.3–28.4 nm, 6.1–221 nm, and 2.7–416 nm for each respective fragment. Only KLK5 was inhibited by rLEKTI(12–15) (Ki = 21.8 nm). No KLK was inhibited by secretory leukocyte protease inhibitor or elafin. Apart from KLK13, all KLKs digested the ectodomain of desmoglein 1 within cadherin repeats, Ca2+ binding sites, or in the juxtamembrane region. Our study indicates that multiple KLKs may participate in desquamation through cleavage of desmoglein 1 and regulation by LEKTI. These findings may have clinical implications for the treatment of skin disorders in which KLK activity is elevated. Desquamation of the stratum corneum is a serine protease-dependent process. Two members of the human tissue kallikrein (KLK) family of (chymo)tryptic-like serine proteases, KLK5 and KLK7, are implicated in desquamation by digestion of (corneo)desmosomes and inhibition by desquamation-related serine protease inhibitors (SPIs). However, the epidermal localization and specificity of additional KLKs also supports a role for these enzymes in desquamation. This study aims to delineate the probable contribution of KLK1, KLK5, KLK6, KLK13, and KLK14 to desquamation by examining their interactions, in vitro, with: 1) colocalized SPI, lympho-epithelial Kazal-type-related inhibitor (LEKTI, four recombinant fragments containing inhibitory domains 1–6 (rLEKTI(1–6)), domains 6–8 and partial domain 9 (rLEKTI(6–9′)), domains 9–12 (rLEKTI(9–12)), and domains 12–15 (rLEKTI(12–15)), secretory leukocyte protease inhibitor, and elafin and 2) their ability to digest the (corneo)desmosomal cadherin, desmoglein 1. KLK1 was not inhibited by any SPI tested. KLK5, KLK6, KLK13, and KLK14 were potently inhibited by rLEKTI(1–6), rLEKTI(6–9′), and rLEKTI(9–12) with Ki values in the range of 2.3–28.4 nm, 6.1–221 nm, and 2.7–416 nm for each respective fragment. Only KLK5 was inhibited by rLEKTI(12–15) (Ki = 21.8 nm). No KLK was inhibited by secretory leukocyte protease inhibitor or elafin. Apart from KLK13, all KLKs digested the ectodomain of desmoglein 1 within cadherin repeats, Ca2+ binding sites, or in the juxtamembrane region. Our study indicates that multiple KLKs may participate in desquamation through cleavage of desmoglein 1 and regulation by LEKTI. These findings may have clinical implications for the treatment of skin disorders in which KLK activity is elevated. As the outermost layer of the skin, the stratum corneum functions as the body's main protective barrier against physical and chemical damage, dehydration, and microbial pathogens. Inter-corneocyte cohesion within the stratum corneum depends primarily on corneodesmosomes, structurally modified desmosomes (1Brody I. Acta Derm. Venereol. 1968; 48: 290-302PubMed Google Scholar, 2Skerrow C.J. Clelland D.G. Skerrow D. J. Cell Sci. 1989; 92: 667-677PubMed Google Scholar, 3Serre G. Mils V. Haftek M. Vincent C. Croute F. Reano A. Ouhayoun J.P. Bettinger S. Soleilhavoup J.P. J. Invest. Dermatol. 1991; 97: 1061-1072Abstract Full Text PDF PubMed Google Scholar). Akin to classical desmosomes, corneodesmosomes maintain tissue integrity and mediate cell adhesion via calcium-dependent interactions between two families of desmosomal cadherins, the desmogleins (DSG1–4) 2The abbreviations used are: DSG, desmoglein; KLK, human tissue kallikrein gene; KLK, human tissue kallikrein protein; LEKTI, lymphoepithelial Kazal-type related inhibitor; NE, neutrophil elastase; NS, Netherton syndrome; SKALP, skin-derived antileukoproteinase; SLPI, secretory leukocyte proteinase inhibitor; SPI, serine protease inhibitor; SPINK5, serine protease inhibitor kazal-type 5; TBS-T, Tris-buffered saline-Tween; WAP, whey acid protein; trappin, transglutaminase substrate and wap domain containing protein; AMC, 7-Amino-4-methylcoumarin; Boc, t-butoxycarbonyl; Bis-Tris, 2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol. and desmocollins 1–3 (4Green K.J. Gaudry C.A. Nat. Rev. Mol. Cell Biol. 2000; 1: 208-216Crossref PubMed Scopus (321) Google Scholar, 5Kurzen H. Moll I. Moll R. Schafer S. Simics E. Amagai M. Wheelock M.J. Franke W.W. Differentiation. 1998; 63: 295-304Crossref PubMed Scopus (0) Google Scholar). The most abundant isoforms in the stratum corneum include DSG1, DSG4, and desmocollin-1 (6Koch P.J. Goldschmidt M.D. Zimbelmann R. Troyanovsky R. Franke W.W. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 353-357Crossref PubMed Scopus (129) Google Scholar, 7Bazzi H. Getz A. Mahoney M.G. Ishida-Yamamoto A. Langbein L. Wahl J.K. II I Christiano A.M. Differentiation. 2006; 74: 129-140Crossref PubMed Scopus (77) Google Scholar). As specialized desmosomes, corneodesmosomes also contain a unique glycoprotein constituent, corneodesmosin (3Serre G. Mils V. Haftek M. Vincent C. Croute F. Reano A. Ouhayoun J.P. Bettinger S. Soleilhavoup J.P. J. Invest. Dermatol. 1991; 97: 1061-1072Abstract Full Text PDF PubMed Google Scholar). During normal stratum corneum desquamation, the most superficial corneocytes are shed from the skin surface. This process requires proteolysis of the corneodesmosomal adhesion molecules DSG1 (8Lundstrom A. Egelrud T. J. Invest. Dermatol. 1990; 94: 216-220Abstract Full Text PDF PubMed Scopus (97) Google Scholar, 9Suzuki Y. Koyama J. Moro O. Horii I. Kikuchi K. Tanida M. Tagami H. Br. J. Dermatol. 1996; 134: 460-464Crossref PubMed Scopus (74) Google Scholar), desmocollin-1 (10King I.A. Tabiowo A. Fryer P.R. J. Cell Biol. 1987; 105: 3053-3063Crossref PubMed Scopus (16) Google Scholar), and corneodesmosin (11Simon M. Jonca N. Guerrin M. Haftek M. Bernard D. Caubet C. Egelrud T. Schmidt R. Serre G. J. Biol. Chem. 2001; 276: 20292-20299Abstract Full Text Full Text PDF PubMed Scopus (153) Google Scholar) likely mediated by both trypsin-like and chymotrypsin-like serine proteases (9Suzuki Y. Koyama J. Moro O. Horii I. Kikuchi K. Tanida M. Tagami H. Br. J. Dermatol. 1996; 134: 460-464Crossref PubMed Scopus (74) Google Scholar, 12Lundstrom A. Egelrud T. J. Invest. Dermatol. 1988; 91: 340-343Abstract Full Text PDF PubMed Scopus (91) Google Scholar). To date, serine protease activity in the stratum corneum has been attributed to human tissue kallikreins (KLK; encoded by KLK genes (EC 3.4.21)), a subgroup of 15 secreted serine proteases with (chymo)trypsin-like specificity (13Borgono C.A. Michael I.P. Diamandis E.P. Mol. Cancer Res. 2004; 2: 257-280PubMed Google Scholar). Among KLKs, a role in stratum corneum desquamation has been ascribed to KLK5 and KLK7, originally denoted stratum corneum tryptic enzyme (14Brattsand M. Egelrud T. J. Biol. Chem. 1999; 274: 30033-30040Abstract Full Text Full Text PDF PubMed Scopus (194) Google Scholar, 15Ekholm I.E. Brattsand M. Egelrud T. J. Invest. Dermatol. 2000; 114: 56-63Abstract Full Text Full Text PDF PubMed Scopus (204) Google Scholar) and stratum corneum chymotryptic enzyme (16Egelrud T. Lundstrom A. Arch. Dermatol. Res. 1991; 283: 108-112Crossref PubMed Scopus (104) Google Scholar, 17Lundstrom A. Egelrud T. Acta Dermatol. Venereol. 1991; 71: 471-474PubMed Google Scholar, 18Hansson L. Stromqvist M. Backman A. Wallbrandt P. Carlstein A. Egelrud T. J. Biol. Chem. 1994; 269: 19420-19426Abstract Full Text PDF PubMed Google Scholar), respectively. Both enzymes are maximally expressed in the stratum granulosum (15Ekholm I.E. Brattsand M. Egelrud T. J. Invest. Dermatol. 2000; 114: 56-63Abstract Full Text Full Text PDF PubMed Scopus (204) Google Scholar, 19Sondell B. Thornell L.E. Stigbrand T. Egelrud T. J. Histochem. Cytochem. 1994; 42: 459-465Crossref PubMed Scopus (71) Google Scholar, 20Sondell B. Thornell L.E. Egelrud T. J. Invest. Dermatol. 1995; 104: 819-823Abstract Full Text PDF PubMed Scopus (87) Google Scholar) and transported to stratum corneum interstices by lamellar granules (20Sondell B. Thornell L.E. Egelrud T. J. Invest. Dermatol. 1995; 104: 819-823Abstract Full Text PDF PubMed Scopus (87) Google Scholar, 21Ishida-Yamamoto A. Simon M. Kishibe M. Miyauchi Y. Takahashi H. Yoshida S. O'Brien T.J. Serre G. Iizuka H. J. Invest. Dermatol. 2004; 122: 1137-1144Abstract Full Text Full Text PDF PubMed Scopus (118) Google Scholar, 22Ishida-Yamamoto A. Deraison C. Bonnart C. Bitoun E. Robinson R. O'Brien T.J. Wakamatsu K. Ohtsubo S. Takahashi H. Hashimoto Y. Dopping-Hepenstal P.J. McGrath J.A. Iizuka H. Richard G. Hovnanian A. J. Invest. Dermatol. 2005; 124: 360-366Abstract Full Text Full Text PDF PubMed Scopus (132) Google Scholar), where they are thought to form a proteolytic cascade in which KLK5 activates itself and KLK7 (23Brattsand M. Stefansson K. Lundh C. Haasum Y. Egelrud T. J. Invest. Dermatol. 2005; 124: 198-203Abstract Full Text Full Text PDF PubMed Scopus (270) Google Scholar). Once active, both enzymes have been shown to concertedly digest DSG1, desmocollin-1, and corneodesmosin, in vitro (11Simon M. Jonca N. Guerrin M. Haftek M. Bernard D. Caubet C. Egelrud T. Schmidt R. Serre G. J. Biol. Chem. 2001; 276: 20292-20299Abstract Full Text Full Text PDF PubMed Scopus (153) Google Scholar, 24Caubet C. Jonca N. Brattsand M. Guerrin M. Bernard D. Schmidt R. Egelrud T. Simon M. Serre G. J. Invest. Dermatol. 2004; 122: 1235-1244Abstract Full Text Full Text PDF PubMed Scopus (419) Google Scholar, 25Descargues P. Deraison C. Prost C. Fraitag S. Mazereeuw-Hautier J. D'Alessio M. Ishida-Yamamoto A. Bodemer C. Zambruno G. Hovnanian A. J. Invest. Dermatol. 2006; 126: 1622-1632Abstract Full Text Full Text PDF PubMed Scopus (165) Google Scholar). In addition to KLKs 5 and 7, accumulating reports suggest that other kallikreins are candidate desquamation-related enzymes, based on their epidermal localization and substrate specificity. For instance, kallikrein 1, 4, 6, 8, 9, 10, 11, 13, and 14 transcripts and/or proteins are also expressed in the stratum granulosum (26Komatsu N. Takata M. Otsuki N. Toyama T. Ohka R. Takehara K. Saijoh K. J. Invest. Dermatol. 2003; 121: 542-549Abstract Full Text Full Text PDF PubMed Scopus (113) Google Scholar, 27Kuwae K. Matsumoto-Miyai K. Yoshida S. Sadayama T. Yoshikawa K. Hosokawa K. Shiosaka S. Mol. Pathol. 2002; 55: 235-241Crossref PubMed Scopus (38) Google Scholar, 28Komatsu N. Saijoh K. Toyama T. Ohka R. Otsuki N. Hussack G. Takehara K. Diamandis E.P. Br. J. Dermatol. 2005; 153: 274-281Crossref PubMed Scopus (121) Google Scholar), and kallikrein 6, 8, 10, 11, 13, and 14 protein levels have been quantified in the stratum corneum (29Komatsu N. Saijoh K. Sidiropoulos M. Tsai B. Levesque M.A. Elliott M.B. Takehara K. Diamandis E.P. J. Invest. Dermatol. 2005; 125: 1182-1189Abstract Full Text Full Text PDF PubMed Scopus (66) Google Scholar). Interestingly, Stefansson et al. (30Stefansson K. Brattsand M. Ny A. Glas B. Egelrud T. Biol. Chem. 2006; 387: 761-768Crossref PubMed Scopus (61) Google Scholar) have recently shown that KLK14 is responsible for ∼50% of the total trypsin-like serine protease activity in the stratum corneum. Moreover, because KLK14 can activate and be activated by KLK5, it may also participate in the cascade pathway (23Brattsand M. Stefansson K. Lundh C. Haasum Y. Egelrud T. J. Invest. Dermatol. 2005; 124: 198-203Abstract Full Text Full Text PDF PubMed Scopus (270) Google Scholar). Because desquamation is a serine protease-dependent process (9Suzuki Y. Koyama J. Moro O. Horii I. Kikuchi K. Tanida M. Tagami H. Br. J. Dermatol. 1996; 134: 460-464Crossref PubMed Scopus (74) Google Scholar, 12Lundstrom A. Egelrud T. J. Invest. Dermatol. 1988; 91: 340-343Abstract Full Text PDF PubMed Scopus (91) Google Scholar), it is regulated by serine protease inhibitors (SPIs). The serine protease/SPI balance governing desquamation is best illustrated by its imbalance in Netherton syndrome (NS; OMIM 256500) (31Komatsu N. Takata M. Otsuki N. Ohka R. Amano O. Takehara K. Saijoh K. J. Invest. Dermatol. 2002; 118: 436-443Abstract Full Text Full Text PDF PubMed Scopus (178) Google Scholar, 32Descargues P. Deraison C. Bonnart C. Kreft M. Kishibe M. Ishida-Yamamoto A. Elias P. Barrandon Y. Zambruno G. Sonnenberg A. Hovnanian A. Nat. Genet. 2005; 37: 56-65Crossref PubMed Scopus (309) Google Scholar, 33Hachem J.P. Wagberg F. Schmuth M. Crumrine D. Lissens W. Jayakumar A. Houben E. Mauro T.M. Leonardsson G. Brattsand M. Egelrud T. Roseeuw D. Clayman G.L. Feingold K.R. Williams M.L. Elias P.M. J. Invest. Dermatol. 2006; 126: 1609-1621Abstract Full Text Full Text PDF PubMed Scopus (149) Google Scholar). NS, an autosomal recessive ichthyotic skin disorder characterized by hair shaft defects, atopic features, overdesquamation of corneocytes, and severe stratum corneum barrier dysfunction (31Komatsu N. Takata M. Otsuki N. Ohka R. Amano O. Takehara K. Saijoh K. J. Invest. Dermatol. 2002; 118: 436-443Abstract Full Text Full Text PDF PubMed Scopus (178) Google Scholar, 34Greene S.L. Muller S.A. J. Am. Acad. Dermatol. 1985; 13: 329-337Abstract Full Text PDF PubMed Scopus (111) Google Scholar), is caused by frameshift and nonsense mutations in the serine protease inhibitor Kazal-type 5 (SPINK5) gene (31Komatsu N. Takata M. Otsuki N. Ohka R. Amano O. Takehara K. Saijoh K. J. Invest. Dermatol. 2002; 118: 436-443Abstract Full Text Full Text PDF PubMed Scopus (178) Google Scholar, 35Chavanas S. Bodemer C. Rochat A. Hamel-Teillac D. Ali M. Irvine A.D. Bonafe J.L. Wilkinson J. Taieb A. Barrandon Y. Harper J.I. de Prost Y. Hovnanian A. Nat. Genet. 2000; 25: 141-142Crossref PubMed Scopus (703) Google Scholar, 36Sprecher E. Chavanas S. DiGiovanna J.J. Amin S. Nielsen K. Prendiville J.S. Silverman R. Esterly N.B. Spraker M.K. Guelig E. de Luna M.L. Williams M.L. Buehler B. Siegfried E.C. Van Maldergem L. Pfendner E. Bale S.J. Uitto J. Hovnanian A. Richard G. J. Invest. Dermatol. 2001; 117: 179-187Abstract Full Text Full Text PDF PubMed Scopus (133) Google Scholar). SPINK5 codes for an SPI with 15 inhibitory domains, which is denoted lympho-epithelial Kazal-type related inhibitor (LEKTI) (37Magert H.J. Standker L. Kreutzmann P. Zucht H.D. Reinecke M. Sommerhoff C.P. Fritz H. Forssmann W.G. J. Biol. Chem. 1999; 274: 21499-21502Abstract Full Text Full Text PDF PubMed Scopus (219) Google Scholar). All SPINK5 mutations introduce premature termination codons in LEKTI transcripts and lead to the production of truncated LEKTI forms that lack several inhibitory domains (35Chavanas S. Bodemer C. Rochat A. Hamel-Teillac D. Ali M. Irvine A.D. Bonafe J.L. Wilkinson J. Taieb A. Barrandon Y. Harper J.I. de Prost Y. Hovnanian A. Nat. Genet. 2000; 25: 141-142Crossref PubMed Scopus (703) Google Scholar, 36Sprecher E. Chavanas S. DiGiovanna J.J. Amin S. Nielsen K. Prendiville J.S. Silverman R. Esterly N.B. Spraker M.K. Guelig E. de Luna M.L. Williams M.L. Buehler B. Siegfried E.C. Van Maldergem L. Pfendner E. Bale S.J. Uitto J. Hovnanian A. Richard G. J. Invest. Dermatol. 2001; 117: 179-187Abstract Full Text Full Text PDF PubMed Scopus (133) Google Scholar). Consequently, the decrease in LEKTI expression/activity in NS causes unrestricted, elevated serine protease activity, as observed in the stratum corneum of NS patients (25Descargues P. Deraison C. Prost C. Fraitag S. Mazereeuw-Hautier J. D'Alessio M. Ishida-Yamamoto A. Bodemer C. Zambruno G. Hovnanian A. J. Invest. Dermatol. 2006; 126: 1622-1632Abstract Full Text Full Text PDF PubMed Scopus (165) Google Scholar, 31Komatsu N. Takata M. Otsuki N. Ohka R. Amano O. Takehara K. Saijoh K. J. Invest. Dermatol. 2002; 118: 436-443Abstract Full Text Full Text PDF PubMed Scopus (178) Google Scholar, 33Hachem J.P. Wagberg F. Schmuth M. Crumrine D. Lissens W. Jayakumar A. Houben E. Mauro T.M. Leonardsson G. Brattsand M. Egelrud T. Roseeuw D. Clayman G.L. Feingold K.R. Williams M.L. Elias P.M. J. Invest. Dermatol. 2006; 126: 1609-1621Abstract Full Text Full Text PDF PubMed Scopus (149) Google Scholar) and of Spink5–/– mice (32Descargues P. Deraison C. Bonnart C. Kreft M. Kishibe M. Ishida-Yamamoto A. Elias P. Barrandon Y. Zambruno G. Sonnenberg A. Hovnanian A. Nat. Genet. 2005; 37: 56-65Crossref PubMed Scopus (309) Google Scholar), leading to overdesquamation and stratum corneum thinning. The predicted activity of LEKTI against trypsin-like serine proteases based on the predominance of basic P1 residues within its inhibitory domains, the colocalization of LEKTI with multiple trypsin-like kallikrein serine proteases within the stratum granulosum and stratum corneum (22Ishida-Yamamoto A. Deraison C. Bonnart C. Bitoun E. Robinson R. O'Brien T.J. Wakamatsu K. Ohtsubo S. Takahashi H. Hashimoto Y. Dopping-Hepenstal P.J. McGrath J.A. Iizuka H. Richard G. Hovnanian A. J. Invest. Dermatol. 2005; 124: 360-366Abstract Full Text Full Text PDF PubMed Scopus (132) Google Scholar, 31Komatsu N. Takata M. Otsuki N. Ohka R. Amano O. Takehara K. Saijoh K. J. Invest. Dermatol. 2002; 118: 436-443Abstract Full Text Full Text PDF PubMed Scopus (178) Google Scholar, 33Hachem J.P. Wagberg F. Schmuth M. Crumrine D. Lissens W. Jayakumar A. Houben E. Mauro T.M. Leonardsson G. Brattsand M. Egelrud T. Roseeuw D. Clayman G.L. Feingold K.R. Williams M.L. Elias P.M. J. Invest. Dermatol. 2006; 126: 1609-1621Abstract Full Text Full Text PDF PubMed Scopus (149) Google Scholar, 38Bitoun E. Micheloni A. Lamant L. Bonnart C. Tartaglia-Polcini A. Cobbold C. Al Saati T. Mariotti F. Mazereeuw-Hautier J. Boralevi F. Hohl D. Harper J. Bodemer C. D'Alessio M. Hovnanian A. Hum. Mol. Genet. 2003; 12: 2417-2430Crossref PubMed Scopus (173) Google Scholar), and the ability of LEKTI (domains 6, 6–9′, and 9–12) to inhibit KLK5 and KLK7 in vitro (39Egelrud T. Brattsand M. Kreutzmann P. Walden M. Vitzithum K. Marx U.C. Forssmann W.G. Magert H.J. Br. J. Dermatol. 2005; 153: 1200-1203Crossref PubMed Scopus (103) Google Scholar, 40Schechter N.M. Choi E.J. Wang Z.M. Hanakawa Y. Stanley J.R. Kang Y. Clayman G.L. Jayakumar A. Biol. Chem. 2005; 386: 1173-1184Crossref PubMed Scopus (91) Google Scholar), strongly suggest that KLKs are in vivo LEKTI targets and further substantiate the role of KLKs as desquamatory enzymes. In addition to LEKTI, the skin contains other SPIs that may regulate desquamation and KLK activity. KLK7 is inhibited by two members of the trappin (transglutaminase substrate and wap (whey acid protein) domain containing protein) gene family, namely secretory leukocyte protease inhibitor (SLPI; also known as antileukoprotease) and elafin (also referred to as proteinase inhibitor 3 and skin-derived antileukoprotease (SKALP)) (41Franzke C.W. Baici A. Bartels J. Christophers E. Wiedow O. J. Biol. Chem. 1996; 271: 21886-21890Abstract Full Text Full Text PDF PubMed Scopus (111) Google Scholar) as well as a novel member of the α2-macroglobulin family, α2-macroglobulin-like-1 (42Galliano M.F. Toulza E. Gallinaro H. Jonca N. Ishida-Yamamoto A. Serre G. Guerrin M. J. Biol. Chem. 2006; 281: 5780-5789Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar). Although the (chymo)trypsin-like substrate specificity and epidermal localization of many KLKs other than KLK5 and KLK7 are compatible with a function in the terminal stages of epidermal turnover, their role as desquamatory proteases has not been investigated. Thus, in an attempt to delineate the possible involvement of multiple KLKs in desquamation, this study examines the interactions between KLK1, KLK5, KLK6, KLK13, and KLK14 with: 1) epidermal SPI (LEKTI, SLPI, and elafin/SKALP) and 2) the (corneo)desmosomal cadherin DSG1, in vitro. Materials—7-Amino-4-methylcoumarin (AMC) was purchased from Sigma-Aldrich. AMC peptide substrates Boc-Val-Pro-Arg-AMC (VPR-AMC), H-Pro-Phe-Arg-AMC (PFR-AMC), and Boc-Gln-Ala-Arg-AMC (QAR-AMC) were purchased from Bachem Bioscience (King of Prussia, PA), and methoxysuccinyl-Ala-Ala-Pro-Val-AMC (AAPV-AMC) was obtained from Calbiochem. All substrates were diluted to a final concentration of 80 mm in Me2SO and stored at –20 °C. Recombinant mature KLK1 and KLK6 were expressed and purified from a baculovirus/insect cell line system as previously described (43Laxmikanthan G. Blaber S.I. Bernett M.J. Scarisbrick I.A. Juliano M.A. Blaber M. Proteins. 2005; 58: 802-814Crossref PubMed Scopus (58) Google Scholar, 44Bernett M.J. Blaber S.I. Scarisbrick I.A. Dhanarajan P. Thompson S.M. Blaber M. J. Biol. Chem. 2002; 277: 24562-24570Abstract Full Text Full Text PDF PubMed Scopus (154) Google Scholar) (kind gifts from Dr. M. Blaber, Florida State University). Recombinant pro-KLK5, pro-KLK13, and mature KLK14 were produced using the Easyselect™ Pichia pastoris expression system (Invitrogen) as described in detail elsewhere (45Michael I.P. Sotiropoulou G. Pampalakis G. Magklara A. Ghosh M. Wasney G. Diamandis E.P. J. Biol. Chem. 2005; 280: 14628-14635Abstract Full Text Full Text PDF PubMed Scopus (135) Google Scholar, 46Sotiropoulou G. Rogakos V. Tsetsenis T. Pampalakis G. Zafiropoulos N. Simillides G. Yiotakis A. Diamandis E.P. Oncol. Res. 2003; 13: 381-391Crossref PubMed Scopus (44) Google Scholar, 47Felber L.M. Borgono C.A. Cloutier S.M. Kundig C. Kishi T. Ribeiro C.J. Jichlinski P. Gygi C.M. Leisinger H.J. Diamandis E.P. Deperthes D. Biol. Chem. 2005; 386: 291-298Crossref PubMed Scopus (54) Google Scholar). KLKs were purified to homogeneity (>95% purity on Coomassie Blue-stained polyacrylamide gels), and their identities were confirmed by tandem mass spectrometry. Recombinant LEKTI fragments containing intact domains 1–6 (rLEKTI(1–6)), domains 6–8 and partial domain 9 (rLEKTI(6–9′)), domains 9–12 (rLEKTI(9–12)), and domains 12–15 (rLEKTI(12–15)) were produced in a baculovirus/insect cell line system as previously reported (40Schechter N.M. Choi E.J. Wang Z.M. Hanakawa Y. Stanley J.R. Kang Y. Clayman G.L. Jayakumar A. Biol. Chem. 2005; 386: 1173-1184Crossref PubMed Scopus (91) Google Scholar, 48Jayakumar A. Kang Y. Henderson Y. Mitsudo K. Liu X. Briggs K. Wang M. Frederick M.J. El Naggar A.K. Bebok Z. Clayman G.L. Arch. Biochem. Biophys. 2005; 435: 89-102Crossref PubMed Scopus (18) Google Scholar, 49Jayakumar A. Kang Y. Mitsudo K. Henderson Y. Frederick M.J. Wang M. El Naggar A.K. Marx U.C. Briggs K. Clayman G.L. Protein Expr. Purif. 2004; 35: 93-101Crossref PubMed Scopus (39) Google Scholar, 50Raghunath M. Tontsidou L. Oji V. Aufenvenne K. Schurmeyer-Horst F. Jayakumar A. Stander H. Smolle J. Clayman G.L. Traupe H. J. Invest. Dermatol. 2004; 123: 474-483Abstract Full Text Full Text PDF PubMed Scopus (96) Google Scholar). Recombinant neutrophil elastase (NE) and elafin were purchased from Calbiochem and Sigma-Aldrich, respectively, diluted in water to a final concentration of 0.5 g/liter, and stored at –80 °C. Recombinant SLPI and a recombinant DSG1/Fc chimera were obtained from R&D Systems Inc. (Minneapolis, MN), reconstituted in phosphate-buffered saline (pH 7.4) to final concentrations of 0.5 g/liter and 0.25 g/liter, respectively, and stored at –80 °C. Anti-LEKTI monoclonal antibodies 1C11G6 and 1D6G8 were produced as previously described (50Raghunath M. Tontsidou L. Oji V. Aufenvenne K. Schurmeyer-Horst F. Jayakumar A. Stander H. Smolle J. Clayman G.L. Traupe H. J. Invest. Dermatol. 2004; 123: 474-483Abstract Full Text Full Text PDF PubMed Scopus (96) Google Scholar). Kinetic Inhibition Assays—The putative inhibitory effect of LEKTI domains 1–6, 6–9′, 9–12, and 12–15, SLPI, and elafin on multiple KLKs was assessed by measuring residual protease activity against AMC peptide substrates after incubation with individual inhibitors. The inhibition of NE by SLPI and elafin was used as a positive control. Assays were performed using optimal substrates (PFR-AMC for KLK1; VPR-AMC for KLK5, KLK6, and KLK13; QAR-AMC for KLK14; and AAPV-AMC for NE) and buffer conditions (KLK1: 0.1 m Tris-HCl, 0.1 m NaCl, 0.01% Tween-20, pH 8.0; KLK5, KLK13, and KLK14: 0.1 m sodium phosphate, 0.01% Tween 20, pH 8.0; KLK6: 50 mm Tris, 0.1 m NaCl, 0.2% bovine serum albumin, pH 7.3; and neutrophil elastase: 0.2 m Tris-HCl, 0.01% Tween-20, pH 7.5) (45Michael I.P. Sotiropoulou G. Pampalakis G. Magklara A. Ghosh M. Wasney G. Diamandis E.P. J. Biol. Chem. 2005; 280: 14628-14635Abstract Full Text Full Text PDF PubMed Scopus (135) Google Scholar, 51Chao J. Barrett A.D. Rawlings N.D. Woessner J.F. 2nd Ed. Handbook of Proteolytic Enzymes. 2. Elsevier Academic Press, London2004: 1577-1580Google Scholar, 52Magklara A. Mellati A.A. Wasney G.A. Little S.P. Sotiropoulou G. Becker G.W. Diamandis E.P. Biochem. Biophys. Res. Commun. 2003; 307: 948-955Crossref PubMed Scopus (133) Google Scholar, 53Kapadia C. Yousef G.M. Mellati A.A. Magklara A. Wasney G.A. Diamandis E.P. Clin. Chim. Acta. 2004; 339: 157-167Crossref PubMed Scopus (24) Google Scholar, 54Borgono C.A. Michael I.P. Shaw J.L. Luo L.Y. Ghosh M.C. Soosaipillai A. Grass L. Katsaros D. Diamandis E.P. J. Biol. Chem. 2006; (November 16, 2006)10.1074/jbc.M608348200Google Scholar). Proteases (final concentration of 12 nm for KLK1, KLK5, KLK13, KLK14, and NE or 30 nm for KLK6) were preincubated with LEKTI fragments (0–60 nm), SLPI (0–1.2 μm), and/or elafin (0–1.2 μm) in 10 μl of optimal buffer at 25 °C (for LEKTI reactions) or 37 °C (for SLPI and elafin reactions) with gentle agitation for different time points (10 min for KLK1 and KLK6, 5 min for KLK6, 1 min for KLK5, and 10 s for KLK14 with LEKTI fragments; 30 min for KLK1, KLK6, and KLK13, 5 min for KLK6 and KLK14, and 1 min for NE with SLPI and elafin). The mixtures were subsequently added to 90 μl of optimal buffer containing several fixed AMC peptide concentrations ranging from 4 to 3000 μm within polystyrene microtiter plate wells. Initial rates of protease-mediated peptide hydrolysis were monitored by measuring free AMC fluorescence on the Wallac 1420 Victor2TM fluorometer (PerkinElmer Life Sciences) with excitation and emission filters of 380 and 480 nm, respectively, at 1-min intervals for 20 min at 37 °C. Protease-free reactions, for each substrate concentration, were used as negative controls, and the background counts obtained were subtracted from each value. A standard curve was constructed using known concentrations of AMC to convert rates of reaction from AMC fluorescence counts/min to free AMC produced/min. The slope of the resultant AMC standard curve was 19.184 AMC fluorescence counts/nm AMC. The rate changes (nanomolar AMC/min) of inhibited and control reactions were determined from the velocity plots. Activities were expressed relative to control incubations from which inhibitors were excluded. Average IC50 values, i.e. the inhibitor concentration required for 50% inhibition of protease activity, were determined by non-linear regression analysis using Prism (Version 4.0, GraphPad, San Diego, CA). Michaelis-Menten parameters (Km and Vmax), the equilibrium inhibition constant (Ki), and inhibitory mechanisms were determined by linear and non-linear regression analysis using the Enzyme Kinetics Module 1.1 (Sigma Plot, SSPS, Chicago, IL). All experiments were performed in triplicate and repeated at least twice. In Vitro Digestion of LEKTI and SLPI by KLKs—LEKTI (10 ng) or SLPI (500 ng) were incubated separately with KLK1, KLK5, KLK6, KLK13, and KLK14 (1 ng for LEKTI reactions; 50 ng for SLPI reactions) in a final optimal buffer volume of 20 μl for different time points ranging from 0 to 24 h at 37 °C with shaking. Control reactions, i.e. KLKs, LEKTI, and SLPI incubated alone, were also performed. Reactions were terminated by freezing in liquid nitrogen and were subsequently resolved by SDS-PAGE using the NuPAGE Bis-Tris electrophoresis system and 4–12% gradient pre-cast polyacrylamide gels under reducing conditions at 200 V for 45 min (Invitrogen). For KLK-SLPI reactions, protein mixtures were visualized by silver staining with the Silver Xpress kit (Invitrogen), according to the manufacturer's instructions. For KLK-LEKTI reactions, proteins were transferred to Hybond-C Extra nitrocellulose membrane (Amersham Biosciences) at 30 V for 1 h, blocked in Tris-buffered saline-Tween (TBS-T; 0.1 mol/liter Tris-HCl buffer (pH 7.5) containing 0.15 mol/liter NaCl and 0.1% Tween 20) supplemented with 5% nonfat dry milk overnight at 4 °C and probed with anti-LEKTI monoclonal antibody 1C11G6 (for rLEKTI(1–6), -(6–9′), and -(9–12)) or 1D6G8 (for rLEKTI(12–15)), both diluted 1:1,000 in TBS-T, for 1 h at room temperature. Membranes were washed three times for 15 min with Tris-buffered saline-Tween and treated with alkaline phosphatase-conjugated goat anti-mouse antibody (1:10,000 in Tris-buffered saline-Tween; Jackson ImmunoResearch Laboratories, West Grove, PA) for 1 h at room temperature. Finally, the membranes were washed again as above, and fluorescence was detected on x-ray film using a chemiluminescent substrate (Diagnostic Products Corp., Los Angeles, CA). Effect of KLKs on SLPI Activity—Prior to measuring the inhibitory activity of SLPI against NE, individual KLKs were incubated with SLPI at several molar ratios (i
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我的娃完成签到,获得积分10
1秒前
落后成仁关注了科研通微信公众号
1秒前
小二郎应助丘奇采纳,获得10
1秒前
Moly完成签到,获得积分10
3秒前
张虹完成签到,获得积分10
4秒前
Breeze完成签到,获得积分10
5秒前
所所应助2333采纳,获得10
5秒前
WangLu2025发布了新的文献求助30
5秒前
JamesPei应助柯不正采纳,获得30
6秒前
小蘑菇应助MHB采纳,获得10
8秒前
彭于晏应助卜谷雪采纳,获得10
9秒前
9秒前
9秒前
旁观者应助wangjinweige6293采纳,获得10
10秒前
aaaaaa发布了新的文献求助20
12秒前
12秒前
布丁拿铁完成签到 ,获得积分10
12秒前
所所应助zzc采纳,获得10
12秒前
寒安发布了新的文献求助50
12秒前
量子星尘发布了新的文献求助30
13秒前
13秒前
佛系养生发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
bkagyin应助优美紫槐采纳,获得10
15秒前
15秒前
16秒前
16秒前
16秒前
17秒前
18秒前
thchiang发布了新的文献求助10
19秒前
马依菲发布了新的文献求助10
19秒前
MHB发布了新的文献求助10
20秒前
晨屿发布了新的文献求助10
20秒前
xinzhao发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730272
求助须知:如何正确求助?哪些是违规求助? 5322398
关于积分的说明 15318370
捐赠科研通 4876855
什么是DOI,文献DOI怎么找? 2619709
邀请新用户注册赠送积分活动 1569121
关于科研通互助平台的介绍 1525755