生物
线粒体DNA
分子生物学
异质性
突变体
线粒体
遗传学
基因
作者
Taraka Donti,Carmen Stromberger,Ming Ge,Karen W. Eldin,William J. Craigen,Brett H. Graham
摘要
Summary Mutations in subunits of Succinyl-CoA Synthetase/Ligase (SCS), a component of the citric acid cycle, are associated with mitochondrial encephalomyopathy, elevation of methylmalonic acid (MMA), and mitochondrial DNA (mtDNA) depletion. While performing a FACS-based retroviral-mediated gene trap mutagenesis screen in mouse embryonic stem (ES) cells for abnormal mitochondrial phenotypes, a gene trap allele of Sucla2 (Sucla2SAβgeo) has been isolated in mouse embryonic stem (ES) cells and used to generate transgenic animals. Sucla2 encodes the ADP-specific β subunit isoform of SCS. Sucla2SAβgeo homozygotes exhibit recessive lethality, with most mutants dying late in gestation (e18.5). Mutant placenta and embryonic (e17.5) brain, heart and muscle show varying degrees of mtDNA depletion (20-60%), while there is no mtDNA depletion in mutant liver, where the gene is not normally expressed. Elevated levels of MMA are observed in embryonic brain. SCS deficient mouse embryonic fibroblasts (MEFs) demonstrate a 50% reduction in mtDNA content compared to wild type MEFs. The mtDNA depletion results in reduced steady state levels of mtDNA encoded proteins and multiple respiratory chain deficiencies, while mtDNA content can be restored by reintroduction of Sucla2. This mouse model of SCS deficiency and mtDNA depletion promises to provide insights into the pathogenesis of mitochondrial diseases with mtDNA depletion and into the biology of mtDNA maintenance. In addition, this report demonstrates the power of a genetic screen that combines gene trap mutagenesis and FACS analysis in mouse ES cells to identify mitochondrial phenotypes and to develop animal models of mitochondrial dysfunction.
科研通智能强力驱动
Strongly Powered by AbleSci AI