数学
希尔伯特空间
Riesz表示定理
M、 Riesz扩张定理
纯数学
有界算子
算符理论
Hilbert空间上的紧算子
有界函数
一般化
操作员(生物学)
Riesz变换
可分离空间
航程(航空)
子空间拓扑
帧(网络)
数学分析
核操作员
里兹势
紧算子
有限秩算子
扩展(谓词逻辑)
巴拿赫空间
计算机科学
生物化学
化学
材料科学
电信
抑制因子
复合材料
转录因子
基因
程序设计语言
作者
Mohammad Sadegh Asgari,Hamidreza Rahimi
标识
DOI:10.1142/s0219025714500131
摘要
In this paper we present a family of analysis and synthesis systems of operators with frame-like properties for the range of a bounded operator on a separable Hilbert space. This family of operators is called a Θ–g-frame, where Θ is a bounded operator on a Hilbert space. Θ–g-frames are a generalization of g-frames, which allows to reconstruct elements from the range of Θ. In general, range of Θ is not a closed subspace. We also construct new Θ–g-frames by considering Θ–g-frames for its components. We further study Riesz decompositions for Hilbert spaces, which are a generalization of the notion of Riesz bases. We define the coefficient operators of a Riesz decomposition and we will show that these coefficient operators are continuous projections. We obtain some results about stability of Riesz decompositions under small perturbations.
科研通智能强力驱动
Strongly Powered by AbleSci AI