Facial Action Unit Recognition Using Pseudo-Intensities and their Transformation

计算机科学 转化(遗传学) 面部表情 人工智能 动作(物理) 面部识别系统 面部肌肉 国家(计算机科学) 模式识别(心理学) 面子(社会学概念) 图像(数学) 语音识别 算法 心理学 物理 沟通 社会学 基因 量子力学 化学 生物化学 社会科学
作者
Junya Saito,Takahisa Yamamoto,Akiyoshi Uchida,Xiaoyu Mi,Kentaro Murase
标识
DOI:10.1109/fg52635.2021.9666995
摘要

Facial action units (AUs) represent facial muscular activities, and our emotions can be expressed through their combinations. Thus, AU recognition is often used in many different applications, including marketing, healthcare, and education. Numerous studies have been conducted on recognizing AUs through several network architectures; however, their performances remain unsatisfactory. One of the difficulties comes from the lack of information regarding a neutral state (i.e., no facial muscular activities) of each person owing to the individuality of a neutral state. This lack of information degrades the recognition performance because the intensities of AUs are derived from a neutral state. In this paper, we propose a novel method using Pseudo-INtensities and their Transformation (PINT) to tackle this problem. To exclude the individuality of a neutral state and accurately capture the changes in facial appearance regarding AUs, we first calculate pseudo-intensities based only on the differences among the intensity states of the same person. We utilize a siamese network architecture and the facial image pairs of the same person to calculate the pseudo-intensities. These pseudo-intensities are then transformed into the actual intensities based on the low pseudo-intensities of the same person, which are considered to correspond to neutral states. We carried out evaluation experiments using two public datasets and found that our method, PINT, achieved a state-of-art performance. The improvements in the average intra-class correlation coefficient score over existing methods were 7.1% on DISFA dataset and 3.1% on FERA2017 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LP完成签到,获得积分10
刚刚
思源应助塔木采纳,获得10
刚刚
刚刚
1秒前
2秒前
2秒前
霸气的玉兰完成签到,获得积分10
2秒前
火星上唇膏完成签到 ,获得积分10
2秒前
jeronimo发布了新的文献求助10
2秒前
宋子虎完成签到 ,获得积分10
2秒前
3秒前
123发布了新的文献求助10
4秒前
吕邓宏发布了新的文献求助10
4秒前
大模型应助zpctx采纳,获得10
4秒前
jireh发布了新的文献求助10
4秒前
小菜鸡发布了新的文献求助10
5秒前
桐桐应助Leeyouyou采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
赘婿应助nietongle采纳,获得10
6秒前
7秒前
Bigbiglei完成签到,获得积分10
7秒前
CodeCraft应助Yealow采纳,获得10
7秒前
wwz应助顾闭月采纳,获得10
8秒前
8秒前
深情安青应助江河采纳,获得10
8秒前
8秒前
YY发布了新的文献求助30
8秒前
无花果应助greeen采纳,获得10
9秒前
7890733发布了新的文献求助10
9秒前
hhhg应助你嵙这个期刊没买采纳,获得10
9秒前
yyy发布了新的文献求助10
10秒前
blingcmeng完成签到,获得积分10
10秒前
大模型应助落寞的一斩采纳,获得10
10秒前
钟小先生完成签到 ,获得积分10
10秒前
11秒前
11秒前
CipherSage应助万嘉俊采纳,获得10
11秒前
Blueeee完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429316
求助须知:如何正确求助?哪些是违规求助? 4542743
关于积分的说明 14182778
捐赠科研通 4460720
什么是DOI,文献DOI怎么找? 2445823
邀请新用户注册赠送积分活动 1437000
关于科研通互助平台的介绍 1414164