Modeling of frozen soil-structure interface shear behavior by supervised deep learning

人工神经网络 残余物 计算机科学 反向传播 人工智能 均方误差 接口(物质) 深度学习 剪应力 含水量 机器学习 软化 剪切(地质) 数据挖掘 岩土工程 材料科学 地质学 算法 数学 统计 复合材料 最大气泡压力法 气泡 并行计算
作者
Weihang Chen,Qiang Luo,Jiankun Liu,Tengfei Wang,Liyang Wang
出处
期刊:Cold Regions Science and Technology [Elsevier BV]
卷期号:200: 103589-103589 被引量:19
标识
DOI:10.1016/j.coldregions.2022.103589
摘要

This paper proposes a data-driven approach to characterize the interface shear behavior between frozen soil and structure surface, which can be regularly encountered in emergency repairs on tunnels using artificial ground freezing. Experimental data of 32 constant normal stress shear tests was compiled and used for supervised training. Exposed temperature, soil moisture content, and normal pressure were used as predictors and shear stress at a specific relative displacement as output. The proposed framework, integrating either backpropagation neural network (BPNN) or bidirectional long short-term memory (Bi-LSTM), was assessed by k-fold cross-validation without or with gaps on a limited data sample. Three performance indicators (RMSE, MAPE, and R2) were employed, showing that both BPNN and Bi-LSTM based computing models can reliably reproduce the peak and residual adfreeze strengths and interface softening behavior as ice bond breaks. Bi-LSTMs generally outperform BPNNs as the former are better-suited for analyzing a sequence of discrete-time data. The feasibility of using supervised deep learning in interface shear behavior modeling is demonstrated. The rapid advancement of digital technologies offers an opportunity for practitioners in artificial ground freezing and other construction projects to make informed decisions using such data-driven methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yahong发布了新的文献求助10
2秒前
三聿完成签到,获得积分10
2秒前
kongdc发布了新的文献求助10
3秒前
lainghy发布了新的文献求助20
3秒前
梅赛德斯奔驰完成签到,获得积分10
5秒前
hhh完成签到,获得积分10
5秒前
青炀完成签到 ,获得积分10
5秒前
8秒前
10秒前
龚仕杰完成签到 ,获得积分10
10秒前
袁清洁完成签到,获得积分20
11秒前
11秒前
11秒前
852应助超爱蛋炒饭采纳,获得10
11秒前
怒江矮柳完成签到,获得积分10
11秒前
大勇放心飞完成签到,获得积分10
12秒前
12秒前
l玖应助科研通管家采纳,获得10
13秒前
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
xty完成签到,获得积分10
13秒前
13秒前
SciGPT应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
iNk应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
14秒前
l玖应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
哈哈大笑应助科研通管家采纳,获得10
15秒前
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883973
求助须知:如何正确求助?哪些是违规求助? 3426234
关于积分的说明 10747786
捐赠科研通 3151073
什么是DOI,文献DOI怎么找? 1739237
邀请新用户注册赠送积分活动 839646
科研通“疑难数据库(出版商)”最低求助积分说明 784753