Site‐Agnostic 3D dose distribution prediction with deep learning neural networks

计算机科学 杠杆(统计) 学习迁移 人工智能 概化理论 数据建模 深度学习 机器学习 数据挖掘 模式识别(心理学) 统计 数学 数据库
作者
Maryam Mashayekhi,Itzel Ramirez Tapia,Anjali Balagopal,Xinran Zhong,Azar Sadeghnejad Barkousaraie,Rafe McBeth,Mu‐Han Lin,Steve Jiang,Dan Nguyen
出处
期刊:Medical Physics [Wiley]
卷期号:49 (3): 1391-1406 被引量:1
标识
DOI:10.1002/mp.15461
摘要

Typically, the current dose prediction models are limited to small amounts of data and require retraining for a specific site, often leading to suboptimal performance. We propose a site-agnostic, three-dimensional dose distribution prediction model using deep learning that can leverage data from any treatment site, thus increasing the total data available to train the model. Applying our proposed model to a new target treatment site requires only a brief fine-tuning of the model to the new data and involves no modifications to the model input channels or its parameters. Thus, it can be efficiently adapted to a different treatment site, even with a small training dataset.This study uses two separate datasets/treatment sites: data from patients with prostate cancer treated with intensity-modulated radiation therapy (source data), and data from patients with head-and-neck cancer treated with volumetric-modulated arc therapy (target data). We first developed a source model with 3D UNet architecture, trained from random initial weights on the source data. We evaluated the performance of this model on the source data. We then studied the generalizability of the model to the new target dataset via transfer learning. To do this, we built three more models, all with the same 3D UNet architecture: target model, adapted model, and combined model. The source and target models were trained on the source and target data from random initial weights, respectively. The adapted model fine-tuned the source model to the target domain by using the target data. Finally, the combined model was trained from random initial weights on a combined data pool consisting of both target and source datasets. We tested all four models on the target dataset and evaluated quantitative dose-volume histogram metrics for the planning target volume (PTV) and organs at risk (OARs).When tested on the source treatment site, the source model accurately predicted the dose distributions with average (mean, max) absolute dose errors of (0.32%±0.14, 2.37%±0.93) (PTV) relative to the prescription dose, and highest mean dose error of 1.68%±0.76, and highest max dose error of 5.47%± 3.31 for femoral head right. The error in PTV dose coverage prediction is 3.21%±1.51 for D98 , 3.04%±1.69 for D95 , and 1.83%±1.01 for D02 . Averaging across all OARs, the source model predicted the OAR mean dose within 1.38% and the OAR max dose within 3.64%. For the target treatment site, the target model average (mean, max) absolute dose errors relative to the prescription dose for the PTV were (1.08%±0.95, 2.90%±1.35). Left cochlea had the highest mean and max dose errors of 5.37%±5.82 and 8.33%±8.88, respectively. The errors in PTV dose coverage prediction for D98 and D95 were 2.88%±1.59 and 2.55%±1.28, respectively. The target model can predict the OAR mean dose within 2.43% and the OAR max dose within 4.33% on average across all OARs.We developed a site-agnostic model for three-dimensional dose prediction and tested its adaptability to a new target treatment site via transfer learning. Our proposed model can make accurate predictions with limited training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dawn完成签到 ,获得积分10
6秒前
杨永佳666完成签到 ,获得积分10
6秒前
烟花应助小雷采纳,获得10
7秒前
pphss发布了新的文献求助30
10秒前
neilphilosci完成签到 ,获得积分10
11秒前
2024kyt完成签到 ,获得积分10
13秒前
胖胖橘完成签到 ,获得积分10
15秒前
一缕轻曲挽南墙完成签到 ,获得积分10
16秒前
汉堡包应助聪明安筠采纳,获得10
19秒前
啦啦啦完成签到 ,获得积分10
21秒前
潇湘完成签到 ,获得积分10
21秒前
看见了紫荆花完成签到 ,获得积分10
22秒前
临风浩歌完成签到 ,获得积分10
24秒前
ghost完成签到 ,获得积分10
28秒前
shimenwanzhao完成签到 ,获得积分0
29秒前
31秒前
研友_LBRPOL完成签到 ,获得积分10
33秒前
小雷发布了新的文献求助10
38秒前
Cai完成签到,获得积分10
43秒前
miyulong完成签到 ,获得积分10
44秒前
NexusExplorer应助陈秋采纳,获得10
46秒前
高挑的洋葱完成签到,获得积分10
54秒前
和谐的映梦完成签到,获得积分10
54秒前
wBw完成签到,获得积分10
58秒前
Epiphany完成签到 ,获得积分10
59秒前
Mendle完成签到 ,获得积分10
1分钟前
搜集达人应助miyulong采纳,获得10
1分钟前
汪汪淬冰冰完成签到,获得积分10
1分钟前
huangzsdy完成签到,获得积分10
1分钟前
王小裔完成签到 ,获得积分10
1分钟前
我爱康康文献完成签到 ,获得积分10
1分钟前
SC完成签到 ,获得积分10
1分钟前
rangergzz应助汪汪淬冰冰采纳,获得10
1分钟前
小雷完成签到,获得积分10
1分钟前
1分钟前
浪麻麻完成签到 ,获得积分10
1分钟前
onevip完成签到,获得积分10
1分钟前
鞑靼完成签到 ,获得积分10
1分钟前
上官聪展完成签到 ,获得积分10
1分钟前
温如军完成签到 ,获得积分10
1分钟前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052652
求助须知:如何正确求助?哪些是违规求助? 2709874
关于积分的说明 7418267
捐赠科研通 2354453
什么是DOI,文献DOI怎么找? 1246090
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921