Site‐Agnostic 3D dose distribution prediction with deep learning neural networks

计算机科学 杠杆(统计) 学习迁移 人工智能 概化理论 数据建模 深度学习 机器学习 数据挖掘 模式识别(心理学) 统计 数学 数据库
作者
Maryam Mashayekhi,Itzel Ramirez Tapia,Anjali Balagopal,Xinran Zhong,Azar Sadeghnejad Barkousaraie,Rafe McBeth,Mu‐Han Lin,Steve Jiang,Dan Nguyen
出处
期刊:Medical Physics [Wiley]
卷期号:49 (3): 1391-1406 被引量:1
标识
DOI:10.1002/mp.15461
摘要

Typically, the current dose prediction models are limited to small amounts of data and require retraining for a specific site, often leading to suboptimal performance. We propose a site-agnostic, three-dimensional dose distribution prediction model using deep learning that can leverage data from any treatment site, thus increasing the total data available to train the model. Applying our proposed model to a new target treatment site requires only a brief fine-tuning of the model to the new data and involves no modifications to the model input channels or its parameters. Thus, it can be efficiently adapted to a different treatment site, even with a small training dataset.This study uses two separate datasets/treatment sites: data from patients with prostate cancer treated with intensity-modulated radiation therapy (source data), and data from patients with head-and-neck cancer treated with volumetric-modulated arc therapy (target data). We first developed a source model with 3D UNet architecture, trained from random initial weights on the source data. We evaluated the performance of this model on the source data. We then studied the generalizability of the model to the new target dataset via transfer learning. To do this, we built three more models, all with the same 3D UNet architecture: target model, adapted model, and combined model. The source and target models were trained on the source and target data from random initial weights, respectively. The adapted model fine-tuned the source model to the target domain by using the target data. Finally, the combined model was trained from random initial weights on a combined data pool consisting of both target and source datasets. We tested all four models on the target dataset and evaluated quantitative dose-volume histogram metrics for the planning target volume (PTV) and organs at risk (OARs).When tested on the source treatment site, the source model accurately predicted the dose distributions with average (mean, max) absolute dose errors of (0.32%±0.14, 2.37%±0.93) (PTV) relative to the prescription dose, and highest mean dose error of 1.68%±0.76, and highest max dose error of 5.47%± 3.31 for femoral head right. The error in PTV dose coverage prediction is 3.21%±1.51 for D98 , 3.04%±1.69 for D95 , and 1.83%±1.01 for D02 . Averaging across all OARs, the source model predicted the OAR mean dose within 1.38% and the OAR max dose within 3.64%. For the target treatment site, the target model average (mean, max) absolute dose errors relative to the prescription dose for the PTV were (1.08%±0.95, 2.90%±1.35). Left cochlea had the highest mean and max dose errors of 5.37%±5.82 and 8.33%±8.88, respectively. The errors in PTV dose coverage prediction for D98 and D95 were 2.88%±1.59 and 2.55%±1.28, respectively. The target model can predict the OAR mean dose within 2.43% and the OAR max dose within 4.33% on average across all OARs.We developed a site-agnostic model for three-dimensional dose prediction and tested its adaptability to a new target treatment site via transfer learning. Our proposed model can make accurate predictions with limited training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
快帮我找找完成签到,获得积分10
刚刚
loey发布了新的文献求助10
2秒前
xu发布了新的文献求助50
6秒前
打我呀发布了新的文献求助10
6秒前
10秒前
顾矜应助yu采纳,获得10
10秒前
SYLH应助GSQ采纳,获得10
10秒前
欢呼的鸡翅完成签到 ,获得积分10
12秒前
siyukou完成签到 ,获得积分10
12秒前
打我呀完成签到,获得积分20
12秒前
脑洞疼应助全民福南瓜采纳,获得10
14秒前
知道发布了新的文献求助10
16秒前
17秒前
help完成签到 ,获得积分10
18秒前
20秒前
20秒前
完美世界应助hhhc采纳,获得10
21秒前
知道完成签到,获得积分10
22秒前
yu完成签到,获得积分10
23秒前
xu完成签到,获得积分10
24秒前
iNk应助科研通管家采纳,获得30
26秒前
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
斯文败类应助科研通管家采纳,获得10
26秒前
斯文败类应助科研通管家采纳,获得10
26秒前
H1998应助科研通管家采纳,获得10
26秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
26秒前
yu发布了新的文献求助10
26秒前
27秒前
lulalula完成签到,获得积分10
27秒前
L-g-b发布了新的文献求助10
27秒前
xxxxxxlp完成签到,获得积分10
28秒前
小猪鱿鱼完成签到,获得积分10
28秒前
28秒前
Daisy完成签到 ,获得积分10
31秒前
xinghong发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761742
求助须知:如何正确求助?哪些是违规求助? 3305515
关于积分的说明 10134536
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658216
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751