亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Site‐Agnostic 3D dose distribution prediction with deep learning neural networks

计算机科学 杠杆(统计) 学习迁移 人工智能 概化理论 数据建模 深度学习 机器学习 数据挖掘 模式识别(心理学) 统计 数学 数据库
作者
Maryam Mashayekhi,Itzel Ramirez Tapia,Anjali Balagopal,Xinran Zhong,Azar Sadeghnejad Barkousaraie,Rafe McBeth,Mu‐Han Lin,Steve Jiang,Dan Nguyen
出处
期刊:Medical Physics [Wiley]
卷期号:49 (3): 1391-1406 被引量:1
标识
DOI:10.1002/mp.15461
摘要

Typically, the current dose prediction models are limited to small amounts of data and require retraining for a specific site, often leading to suboptimal performance. We propose a site-agnostic, three-dimensional dose distribution prediction model using deep learning that can leverage data from any treatment site, thus increasing the total data available to train the model. Applying our proposed model to a new target treatment site requires only a brief fine-tuning of the model to the new data and involves no modifications to the model input channels or its parameters. Thus, it can be efficiently adapted to a different treatment site, even with a small training dataset.This study uses two separate datasets/treatment sites: data from patients with prostate cancer treated with intensity-modulated radiation therapy (source data), and data from patients with head-and-neck cancer treated with volumetric-modulated arc therapy (target data). We first developed a source model with 3D UNet architecture, trained from random initial weights on the source data. We evaluated the performance of this model on the source data. We then studied the generalizability of the model to the new target dataset via transfer learning. To do this, we built three more models, all with the same 3D UNet architecture: target model, adapted model, and combined model. The source and target models were trained on the source and target data from random initial weights, respectively. The adapted model fine-tuned the source model to the target domain by using the target data. Finally, the combined model was trained from random initial weights on a combined data pool consisting of both target and source datasets. We tested all four models on the target dataset and evaluated quantitative dose-volume histogram metrics for the planning target volume (PTV) and organs at risk (OARs).When tested on the source treatment site, the source model accurately predicted the dose distributions with average (mean, max) absolute dose errors of (0.32%±0.14, 2.37%±0.93) (PTV) relative to the prescription dose, and highest mean dose error of 1.68%±0.76, and highest max dose error of 5.47%± 3.31 for femoral head right. The error in PTV dose coverage prediction is 3.21%±1.51 for D98 , 3.04%±1.69 for D95 , and 1.83%±1.01 for D02 . Averaging across all OARs, the source model predicted the OAR mean dose within 1.38% and the OAR max dose within 3.64%. For the target treatment site, the target model average (mean, max) absolute dose errors relative to the prescription dose for the PTV were (1.08%±0.95, 2.90%±1.35). Left cochlea had the highest mean and max dose errors of 5.37%±5.82 and 8.33%±8.88, respectively. The errors in PTV dose coverage prediction for D98 and D95 were 2.88%±1.59 and 2.55%±1.28, respectively. The target model can predict the OAR mean dose within 2.43% and the OAR max dose within 4.33% on average across all OARs.We developed a site-agnostic model for three-dimensional dose prediction and tested its adaptability to a new target treatment site via transfer learning. Our proposed model can make accurate predictions with limited training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助勇往直前采纳,获得10
19秒前
24秒前
勇往直前完成签到,获得积分10
24秒前
勇往直前发布了新的文献求助10
31秒前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
violet兰发布了新的文献求助10
2分钟前
2分钟前
天天快乐应助violet兰采纳,获得10
2分钟前
2分钟前
MRaimirai发布了新的文献求助10
2分钟前
3分钟前
哈哈哈完成签到 ,获得积分10
3分钟前
penny发布了新的文献求助10
4分钟前
俏皮的安萱完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
David Zhang发布了新的文献求助10
4分钟前
bc举报权小夏求助涉嫌违规
4分钟前
4分钟前
bc举报在封我就急眼啦求助涉嫌违规
5分钟前
bc举报muqianyaowanan求助涉嫌违规
5分钟前
5分钟前
bc举报lpcxly求助涉嫌违规
5分钟前
充电宝应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
优秀的流沙关注了科研通微信公众号
5分钟前
jjj发布了新的文献求助10
5分钟前
温暖大米完成签到 ,获得积分10
5分钟前
violet兰发布了新的文献求助10
5分钟前
5分钟前
jjj完成签到,获得积分20
5分钟前
星辰大海应助jjj采纳,获得10
5分钟前
bc应助三景采纳,获得30
5分钟前
joanna完成签到,获得积分10
6分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788267
求助须知:如何正确求助?哪些是违规求助? 3333714
关于积分的说明 10263158
捐赠科研通 3049568
什么是DOI,文献DOI怎么找? 1673634
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760511