Multi-layer perceptron for detection of different class antibiotics from visual fluorescence response of a carbon nanoparticle-based multichannel array sensor

人工智能 计算机科学 荧光 碳纳米颗粒 班级(哲学) 感知器 图层(电子) 纳米颗粒 碳纤维 模式识别(心理学) 人工神经网络 纳米技术 材料科学 光学 算法 物理 复合数
作者
Saptarshi Mandal,Dipanjyoti Paul,Sriparna Saha,Prolay Das
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:360: 131660-131660 被引量:18
标识
DOI:10.1016/j.snb.2022.131660
摘要

Lack of automated accurate decision-making along with an on-site detection system impedes the identification of substances of environmental concern. In pursuit of making this feasible, we interconnected our optical fluorescence array sensing strategy with the predictive analytics of artificial intelligence. Herein, we developed a Carbon Nanoparticle-based nine-channel fluorescence array sensing method for the detection of six antibiotics of different classes that are precariously dumped in the environment from various industrial and animal husbandry sources. The fluorescence responses of the arrays in the presence or absence of six antibiotics were captured digitally and these were utilized as feature values for the identification of classes using machine learning and deep learning algorithms. Among the seven tested multi-class classification algorithms, Multi-layer Perceptron (MLP) with Generative Adversarial Nets stimulated augmented data set (Aug-MLP) outdid the others in recognizing the antibiotics. Most importantly, the performance of Aug-MLP is comparable to fluorescence spectroscopic discrimination that outclasses human visual judgment. The whole methodology was found to adapt well in real samples like extracts of poultry feeds. In a nutshell, a nanotechnology-deep learning interfaced semi-automated on-site multi-class antibiotic detection strategy has been developed that could be extended for inexpensive and expedited detection of other chemical entities. • Generative Adversarial Nets (GANs) have been used for the first time in visual fluorescence-based sensing. • Carbon nanoparticle-based visual fluorescence array sensor assimilated to predictive analytics of artificial intelligence. • Seven multi-class supervised algorithms employed to recognise various antibiotics through CMYK extraction of digital images. • Generative Adversarial Nets (GANs) aided Multi-Layer Perceptron (MLP) surpassed visual judgement to detect antibiotics. • Nanotechnology-deep learning interfaced semi-automated, inexpensive, point-of-care, antibiotic detection strategy developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松盼望发布了新的文献求助10
1秒前
阳光萌萌完成签到,获得积分10
1秒前
夏冰发布了新的文献求助10
1秒前
2秒前
简单十三完成签到,获得积分10
2秒前
fddd完成签到 ,获得积分10
2秒前
落后珍发布了新的文献求助10
2秒前
叙温雨发布了新的文献求助10
2秒前
糟糕的雁菱完成签到 ,获得积分10
2秒前
科目三应助冬天该很好采纳,获得10
3秒前
3秒前
su完成签到,获得积分10
5秒前
5秒前
6秒前
轻松的小白菜完成签到,获得积分10
6秒前
科研通AI5应助新来的家伙采纳,获得10
6秒前
Michstabe完成签到,获得积分10
7秒前
7秒前
sean118完成签到 ,获得积分10
7秒前
8秒前
末123456完成签到,获得积分10
8秒前
夏冰完成签到,获得积分10
9秒前
叙温雨完成签到,获得积分10
9秒前
9秒前
9秒前
Afeng发布了新的文献求助10
9秒前
会飞的鱼完成签到,获得积分10
10秒前
rrr发布了新的文献求助10
10秒前
沉默芸发布了新的文献求助10
10秒前
Michstabe发布了新的文献求助10
11秒前
飞快的谷蕊完成签到 ,获得积分10
11秒前
科研通AI5应助wangx采纳,获得10
11秒前
SYLH应助同若离采纳,获得10
11秒前
yangyangyang完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
今后应助活泼小霸王采纳,获得10
13秒前
典雅的静发布了新的文献求助10
13秒前
nn发布了新的文献求助10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330683
关于积分的说明 10247648
捐赠科研通 3046081
什么是DOI,文献DOI怎么找? 1671842
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759747