Remote sensing of total suspended matter concentration in lakes across China using Landsat images and Google Earth Engine

环境科学 采样(信号处理) 反射率 均方误差 遥感 回归分析 地表水 卫星 决定系数 水文学(农业) 数学 统计 地理 地质学 环境工程 滤波器(信号处理) 光学 物理 工程类 计算机科学 航空航天工程 计算机视觉 岩土工程
作者
Zhidan Wen,Qiang Wang,Ge Liu,Pierre-André Jacinthe,Xiang Wang,Lili Lyu,Hui Tao,Yue Ma,Hongtao Duan,Yingxin Shang,Baohua Zhang,Yunxia Du,Jia Du,Sijia Li,Shuai Cheng,Kaishan Song
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:187: 61-78 被引量:59
标识
DOI:10.1016/j.isprsjprs.2022.02.018
摘要

Total suspended matter (TSM) has a crucial impact on light propagation in the water column, and often co-varies with nutrients, heavy metal and micropollutant fluxes. The objective of this study was to explore the feasibility of mapping TSM in lakes (area > 1 ha) across China using Landsat surface reflectance product embedded in Google Earth Engine. We conducted 44 sampling campaigns at 423 natural and manmade lakes across China, and determined TSM from 2036 water samples collected during 2011–2020. Landsat surface reflectance was matched with water sampling events within ±7 days of satellite overpasses, yielding 1908 matched pairs. We divided the TSM dataset into nine subsets, with eight subsets dedicated to building of simple regression and Random Forest (RF) models, and the remaining subset used to validate model performance. Regression analysis indicated strong associations between TSM concentration and both the Red band (Band 4; R2 = 0.76, RMSE = 21.4 mg/L) and the suspended matter index [(Nir + Red)/2); R2 = 0.71, RMSE = 17.1 mg/L]. The RF model outperformed the Red band model as indicated by higher coefficient of determination for model calibration (R2 = 0.95) and validation (R2 = 0.81). We also assembled samples (N = 1703) from lakes in different continents, and both the RF (RMSE = 16.04 mg/L) and Red band (RMSE = 18.9 mg/L) models exhibited acceptable performance. The models were further evaluated using a time series of TSM records from six large lakes in the USA and Japan (in situ TSM collected during 1988–2018). Finally, we used 460 scenes of Landsat/OLI images mainly acquired in 2019 to map TSM in lakes across China. Results showed considerable regional variability (TSM range: 0.12–860 mg/L), with lakes in Northeast China (44.6 mg/L), East China (38.8 mg/L) and Xinjiang-Inner Mongolia (39.7 mg/L) exhibiting much higher TSM concentration than lakes in the Yungui Plateau (17.62 mg/L) and the Tibetan Plateau (5.31 mg/L). Results confirmed the stability and spatial transferability of both models. Given the relationships among TSM and various indicators (e.g. nutrients, water clarity, chlorophyll-a) of the trophic state of aquatic ecosystems, these models would greatly facilitate TSM monitoring in lakes, and provide water resources managers with additional tools to assess the impact of water protection measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梧桐完成签到,获得积分10
1秒前
2秒前
Sun完成签到,获得积分10
2秒前
2秒前
李迎硕完成签到,获得积分10
3秒前
fuyue完成签到,获得积分10
3秒前
wyblobin完成签到,获得积分10
3秒前
4秒前
4秒前
zr1109完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
Sun发布了新的文献求助10
6秒前
默默随阴完成签到,获得积分10
6秒前
cc完成签到,获得积分10
7秒前
Snoopy发布了新的文献求助10
7秒前
8秒前
嘿嘿应助陶醉热狗采纳,获得10
8秒前
9秒前
ll完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
小杜发布了新的文献求助30
11秒前
13秒前
aaa完成签到 ,获得积分10
13秒前
14秒前
y741应助李迎硕采纳,获得20
14秒前
Criminology34应助清爽指甲油采纳,获得10
14秒前
zzzzz完成签到,获得积分10
14秒前
蓝色记忆完成签到,获得积分10
15秒前
15秒前
地理汪汪发布了新的文献求助10
16秒前
zhengzehong完成签到,获得积分10
17秒前
zzzzz发布了新的文献求助10
17秒前
阿尔法贝塔完成签到 ,获得积分10
18秒前
平淡的问儿完成签到,获得积分10
18秒前
lxy发布了新的文献求助10
19秒前
20秒前
21秒前
小羊完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600162
求助须知:如何正确求助?哪些是违规求助? 4685896
关于积分的说明 14840412
捐赠科研通 4675610
什么是DOI,文献DOI怎么找? 2538581
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471144