The intersection of damage evaluation of fiber-reinforced composite materials with machine learning: A review

结构健康监测 纤维增强塑料 复合数 计算机科学 航空航天 机制(生物学) 材料科学 交叉口(航空) 纤维增强复合材料 结构工程 复合材料 算法 工程类 认识论 哲学 航空航天工程
作者
Christopher Nelon,Oliver Myers,Asha Hall
出处
期刊:Journal of Composite Materials [SAGE Publishing]
卷期号:56 (9): 1417-1452 被引量:33
标识
DOI:10.1177/00219983211037048
摘要

Machine learning (ML) has emerged as a useful predictive tool based on mathematical and statistical relationships for various engineering problems. The pairing of structural health monitoring (SHM) and nondestructive evaluation (NDE) methods with ML algorithms has yielded beneficial results in addressing the damage state of a material or system. Damage state descriptions addressed with ML include detecting a damage mechanism, locating a mechanism, identifying the type of mechanism, assessing the extent of the damage mechanism, and estimating the useful remaining life of a material or system. Damage evaluation research of composite materials has progressed with the increased usage of composite structural elements in the aerospace industry. NDE methods are a viable candidate for pairing with ML algorithms to improve damage state monitoring of composite materials due to the complexity associated with the structure of composites. Fiber-reinforced polymers (FRP), for example, contain at least two constituent materials a fiber and matrix material whose mechanical behavior and interactions contribute to the performance of an FRP. Unlike conventional composite analytical models that require explicit information about the constituents and microstructure of a laminate, an ML algorithm can construct damage evaluation predictions when employing exclusively past operational performance or data from an SHM or NDE method. A researcher determines the type of data selected when applying an ML model for trend analysis, anomaly detection, or prediction making. However, no one specific input feature is required for utilizing an ML model, and examples of possible data features include material properties, physical dimensions, and collected evaluation data. In the present review, applications of ML combined with the damage state evaluation of composite materials, particularly examining FRPs, are discussed to demonstrate the predictive capabilities of ML and its viability for future applications, especially in industrial environments, to minimize costs and improve damage detection rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huangsi完成签到,获得积分10
1秒前
兴奋渊思完成签到 ,获得积分10
1秒前
彭于晏应助Pyrene采纳,获得10
1秒前
高大莺完成签到 ,获得积分10
2秒前
2秒前
852应助灵灵采纳,获得10
2秒前
3秒前
Shark完成签到,获得积分10
3秒前
等待盼雁完成签到,获得积分10
3秒前
炙热的凌寒完成签到 ,获得积分10
3秒前
SYLH应助lyh采纳,获得10
3秒前
ECUST应助lyh采纳,获得10
3秒前
popo完成签到,获得积分10
4秒前
song_song完成签到,获得积分10
5秒前
Xdz完成签到 ,获得积分10
5秒前
5秒前
研友_VZG7GZ应助Yuan采纳,获得10
5秒前
5秒前
6秒前
Rika7完成签到,获得积分20
6秒前
淡定的夜梦完成签到,获得积分10
6秒前
张菁完成签到,获得积分10
6秒前
疯了半天完成签到,获得积分10
7秒前
忐忑的寒烟关注了科研通微信公众号
7秒前
充电宝应助li采纳,获得10
7秒前
7秒前
ZWZ完成签到,获得积分10
8秒前
一枚研究僧完成签到,获得积分0
8秒前
Youth发布了新的文献求助10
8秒前
9秒前
现代的岩发布了新的文献求助10
9秒前
任清炎完成签到,获得积分0
9秒前
Rika7发布了新的文献求助50
9秒前
合适的毛豆完成签到,获得积分10
9秒前
torch132完成签到,获得积分10
9秒前
chase完成签到,获得积分10
9秒前
华仔应助科研通管家采纳,获得10
10秒前
机灵柚子应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
pcr163应助科研通管家采纳,获得30
10秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
2023 ASHRAE Handbook HVAC Applications (SI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3872337
求助须知:如何正确求助?哪些是违规求助? 3414587
关于积分的说明 10689951
捐赠科研通 3138912
什么是DOI,文献DOI怎么找? 1731816
邀请新用户注册赠送积分活动 835019
科研通“疑难数据库(出版商)”最低求助积分说明 781656