亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on fault diagnosis of gas turbine rotor based on adversarial discriminative domain adaption transfer learning

断层(地质) 转子(电动) 判别式 试验数据 计算机科学 人工智能 领域(数学分析) 卷积神经网络 工程类 模式识别(心理学) 数学 机械工程 地质学 数学分析 地震学 程序设计语言
作者
Shucong Liu,Hongjun Wang,Jingpeng Tang,Xiang Zhang
出处
期刊:Measurement [Elsevier]
卷期号:196: 111174-111174 被引量:59
标识
DOI:10.1016/j.measurement.2022.111174
摘要

• Proposed an unsupervised transfer learning method for gas turbine faults diagnosis. • Adversarial discriminative is used for gas turbine faults diagnosis in different domains. • An ADDATLN suitable for gas turbine vibration signal is designed. • Field test bench verified the effectiveness compared with others methods. In the process of gas turbine rotor fault diagnosis based on data-driven, transfer learning is an effective method to solve the lack of gas turbines labeled data, which will result in domain shifts due to the data distribution difference between source domain data and target domain data under variable working condition. A gas turbine fault diagnosis method based on Adversarial Discriminative Domain Adaptation Transfer Learning Network (ADDATLN) is put forward to reduce domain offsets and improve the gas turbine fault diagnosis accuracy. In the proposed method, pre-trained deep Convolutional Neural Networks (CNN) models in the source domain is transferred to target domain data, then deep adversarial training between the source domain and target domain is adopted to adaptively optimize the model parameters of the target domain network, with the purpose of reducing domain offsets and improving gas turbine fault classification accuracy. Field test experiment results on gas turbine rotor fault diagnosis under different working conditions show that the average accuracy of the proposed method reaches 96.45%, and the average accuracy of fault diagnosis on different gas turbines with the same type achieved 95.13%. The field test results confirm that the method effectively reduces the domain differences caused by varying working conditions and different gas turbines, and improves the accuracy of gas turbine rotor fault diagnosis under variable working condition and for different gas turbines with small samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
十七发布了新的文献求助10
8秒前
翟不评发布了新的文献求助30
14秒前
21秒前
ding应助淡然绝山采纳,获得10
23秒前
Akim应助科研通管家采纳,获得20
24秒前
我是老大应助科研通管家采纳,获得10
25秒前
英姑应助科研通管家采纳,获得10
25秒前
39秒前
爆米花应助cherish采纳,获得10
41秒前
Autoferry完成签到 ,获得积分10
46秒前
1分钟前
渔樵发布了新的文献求助10
1分钟前
CodeCraft应助完美的流沙采纳,获得10
1分钟前
1分钟前
森林木发布了新的文献求助10
1分钟前
香蕉觅云应助渔樵采纳,获得10
1分钟前
1分钟前
cherish发布了新的文献求助10
1分钟前
fmx完成签到,获得积分10
2分钟前
思源应助SSY采纳,获得10
2分钟前
顾矜应助SSY采纳,获得10
2分钟前
jy发布了新的文献求助10
2分钟前
可爱的函函应助luole采纳,获得10
2分钟前
2分钟前
nanjiluotuo11发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
CipherSage应助科研通管家采纳,获得30
2分钟前
量子星尘发布了新的文献求助10
2分钟前
李健的粉丝团团长应助hc采纳,获得10
2分钟前
2分钟前
Waymaker发布了新的文献求助10
2分钟前
科研米虫完成签到,获得积分10
3分钟前
斯文败类应助科研米虫采纳,获得10
3分钟前
星星科语发布了新的文献求助10
3分钟前
FLANKS完成签到,获得积分10
3分钟前
ybk666完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723706
求助须知:如何正确求助?哪些是违规求助? 5280292
关于积分的说明 15299069
捐赠科研通 4872062
什么是DOI,文献DOI怎么找? 2616490
邀请新用户注册赠送积分活动 1566316
关于科研通互助平台的介绍 1523192