An Empirical Study of Remote Sensing Pretraining

计算机科学 人工智能 变压器 分割 深度学习 卷积神经网络 计算机视觉 机器学习 模式识别(心理学) 量子力学 物理 电压
作者
Di Wang,Jing Zhang,B. X. Du,Gui-Song Xia,Dacheng Tao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-20 被引量:24
标识
DOI:10.1109/tgrs.2022.3176603
摘要

Deep learning has largely reshaped remote sensing (RS) research for aerial image understanding and made a great success. Nevertheless, most of the existing deep models are initialized with the ImageNet pretrained weights since natural images inevitably present a large domain gap relative to aerial images, probably limiting the fine-tuning performance on downstream aerial scene tasks. This issue motivates us to conduct an empirical study of RS pretraining (RSP) on aerial images. To this end, we train different networks from scratch with the help of the largest RS scene recognition dataset up to now—MillionAID—to obtain a series of RS pretrained backbones, including both convolutional neural networks (CNNs) and vision transformers, such as Swin and ViTAE, which have shown promising performance on computer vision tasks. Then, we investigate the impact of RSP on representative downstream tasks, including scene recognition, semantic segmentation, object detection, and change detection using these CNN and vision transformer backbones. Empirical study shows that RSP can help deliver distinctive performances in scene recognition tasks and in perceiving RS-related semantics, such as “Bridge” and “Airplane.” We also find that, although RSP mitigates the data discrepancies of traditional ImageNet pretraining on RS images, it may still suffer from task discrepancies, where downstream tasks require different representations from scene recognition tasks. These findings call for further research efforts on both large-scale pretraining datasets and effective pretraining methods. The codes and pretrained models will be released at https://github.com/ViTAE-Transformer/ViTAE-Transformer-Remote-Sensing .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨绍伟完成签到,获得积分10
刚刚
YJ888完成签到,获得积分10
1秒前
美女发布了新的文献求助10
1秒前
2秒前
承影完成签到,获得积分10
3秒前
3秒前
YJ888发布了新的文献求助10
4秒前
spujo应助英勇梦安采纳,获得10
4秒前
王jh发布了新的文献求助10
4秒前
4秒前
5秒前
行歌发布了新的文献求助10
6秒前
曦月发布了新的文献求助10
8秒前
科研通AI5应助许win采纳,获得30
8秒前
FashionBoy应助美女采纳,获得10
9秒前
10秒前
科目三应助黄子腾采纳,获得10
10秒前
12秒前
我是老大应助roumaoliang采纳,获得10
13秒前
靓丽大神发布了新的文献求助10
13秒前
jyyg发布了新的文献求助10
16秒前
22发布了新的文献求助10
16秒前
肖耶啵应助PL采纳,获得10
17秒前
17秒前
18秒前
clown应助Animagus采纳,获得50
18秒前
彬彬完成签到,获得积分10
21秒前
Jasper应助高挑的小蕊采纳,获得10
21秒前
Hello应助海凌钟采纳,获得10
21秒前
马小马发布了新的文献求助10
21秒前
呐呐发布了新的文献求助30
22秒前
科研通AI5应助LLL采纳,获得10
24秒前
可爱的函函应助亢kxh采纳,获得10
25秒前
27秒前
28秒前
qipengli完成签到,获得积分10
30秒前
30秒前
31秒前
22完成签到,获得积分10
31秒前
dxc完成签到 ,获得积分10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787625
求助须知:如何正确求助?哪些是违规求助? 3333214
关于积分的说明 10260263
捐赠科研通 3048828
什么是DOI,文献DOI怎么找? 1673284
邀请新用户注册赠送积分活动 801756
科研通“疑难数据库(出版商)”最低求助积分说明 760338