An Empirical Study of Remote Sensing Pretraining

计算机科学 遥感 地质学
作者
Di Wang,Jing Zhang,Bo Du,Gui-Song Xia,Dacheng Tao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-20 被引量:143
标识
DOI:10.1109/tgrs.2022.3176603
摘要

Deep learning has largely reshaped remote sensing (RS) research for aerial image understanding and made a great success. Nevertheless, most of the existing deep models are initialized with the ImageNet pretrained weights since natural images inevitably present a large domain gap relative to aerial images, probably limiting the fine-tuning performance on downstream aerial scene tasks. This issue motivates us to conduct an empirical study of RS pretraining (RSP) on aerial images. To this end, we train different networks from scratch with the help of the largest RS scene recognition dataset up to now—MillionAID—to obtain a series of RS pretrained backbones, including both convolutional neural networks (CNNs) and vision transformers, such as Swin and ViTAE, which have shown promising performance on computer vision tasks. Then, we investigate the impact of RSP on representative downstream tasks, including scene recognition, semantic segmentation, object detection, and change detection using these CNN and vision transformer backbones. Empirical study shows that RSP can help deliver distinctive performances in scene recognition tasks and in perceiving RS-related semantics, such as "Bridge" and "Airplane." We also find that, although RSP mitigates the data discrepancies of traditional ImageNet pretraining on RS images, it may still suffer from task discrepancies, where downstream tasks require different representations from scene recognition tasks. These findings call for further research efforts on both large-scale pretraining datasets and effective pretraining methods. The codes and pretrained models will be released at https://github.com/ViTAE-Transformer/ViTAE-Transformer-Remote-Sensing .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
reggielike发布了新的文献求助10
1秒前
1秒前
新菜完成签到,获得积分10
1秒前
ldkl应助QXS采纳,获得30
4秒前
Done完成签到,获得积分10
4秒前
4秒前
laicai发布了新的文献求助10
4秒前
Cynthia完成签到,获得积分10
5秒前
cherry发布了新的文献求助10
5秒前
刘文静完成签到,获得积分10
6秒前
7秒前
lv发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
NexusExplorer应助美满的冬卉采纳,获得10
10秒前
10秒前
11秒前
FeCl完成签到,获得积分10
13秒前
13秒前
顾矜应助常富育采纳,获得10
13秒前
卡戎529发布了新的文献求助10
14秒前
乔一发布了新的文献求助10
15秒前
科研通AI6应助lucy采纳,获得10
16秒前
17秒前
严三笑完成签到,获得积分10
17秒前
王怡宁完成签到 ,获得积分10
19秒前
Akim应助幸运海星采纳,获得10
19秒前
拼搏念蕾完成签到 ,获得积分10
20秒前
刘畅完成签到,获得积分10
20秒前
科研通AI5应助cherry采纳,获得10
21秒前
21秒前
21秒前
不想干活应助洛希极限采纳,获得20
22秒前
花楹应助安详的惜梦采纳,获得10
22秒前
jingtanhao发布了新的文献求助10
22秒前
嗯呢完成签到 ,获得积分10
22秒前
haha_1057完成签到,获得积分10
22秒前
23秒前
刘斌发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4371863
求助须知:如何正确求助?哪些是违规求助? 3869238
关于积分的说明 12062226
捐赠科研通 3512022
什么是DOI,文献DOI怎么找? 1927176
邀请新用户注册赠送积分活动 969168
科研通“疑难数据库(出版商)”最低求助积分说明 868069