Dose-weighted proton linear energy transfer map generation using a deep learning framework

计算机科学 能量(信号处理) 质子 人工智能 物理 数学 统计 核物理学
作者
Yuan Gao,Chih‐Wei Chang,Shaoyan Pan,Junbo Peng,Chaoqiong Ma,Pretesh Patel,Justin Roper,Jun Zhou,Xiaofeng Yang
标识
DOI:10.1117/12.3006962
摘要

The advantage of proton therapy over photon therapy lies in the Bragg peak effect, which allows protons to deposit most of their energy precisely at the tumor site, minimizing damage to surrounding healthy tissue. Despite this, the standard approach to clinical treatment planning does not fully consider the differences in biological effectiveness between protons and photons. Currently, a uniform Relative Biological Effectiveness (RBE) value of 1.1 is used in clinical settings to compare protons to photons, despite evidence that proton RBE can vary significantly. This variation underscores the need for more refined proton therapy treatment planning those accounts for the variable RBE. A critical parameter in assessing the RBE of proton therapy is the Dose-Average Linear Energy Transfer (LETd), which is instrumental in optimizing proton treatment plans. Accurate LETd distribution calculations require complex physical models and the implementation of sophisticated Monte-Carlo (MC) simulation software. These simulations are both computationally intensive and time-consuming. To address these challenges, we propose a Deep Learning (DL)-based framework aimed at predicting the LETd distribution map from the dose distribution map. This framework utilizes Mean Absolute Error (MAE), Peak Signal-to-Noise Ratio (PSNR), and Normalized Cross Correlation (NCC) to measure discrepancies between MC-derived LETd and the LETd maps generated by our model. Our approach has shown promise in producing synthetic LETd maps from dose maps, potentially enhancing proton therapy planning through the provision of precise LETd information. This development could significantly contribute to more effective and individualized proton therapy treatments, optimizing therapeutic outcomes while further minimizing harm to healthy tissue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助chcui采纳,获得10
1秒前
Yoona完成签到 ,获得积分10
1秒前
happpy完成签到,获得积分10
2秒前
北瑾发布了新的文献求助10
3秒前
yawnzzzz发布了新的文献求助10
3秒前
朱成勋完成签到,获得积分10
3秒前
4秒前
自由盼夏完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
ihonest完成签到,获得积分0
9秒前
勤奋帅帅发布了新的文献求助10
9秒前
9秒前
迷人雪碧发布了新的文献求助10
10秒前
11秒前
yawnzzzz完成签到,获得积分10
11秒前
热心幻天发布了新的文献求助10
12秒前
顺心白开水完成签到,获得积分10
15秒前
15秒前
小蘑菇应助不安夏青采纳,获得10
15秒前
chcui发布了新的文献求助10
15秒前
科研通AI6应助qeqeq采纳,获得10
16秒前
16秒前
萊以托尔福完成签到,获得积分10
18秒前
suijisuiji1发布了新的文献求助10
18秒前
卷里偷牲完成签到,获得积分10
20秒前
从容凝安发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
超级的丸子完成签到,获得积分10
21秒前
22秒前
田様应助顺顺采纳,获得10
22秒前
xty发布了新的文献求助10
23秒前
23秒前
lianlian完成签到,获得积分10
23秒前
haojiahui完成签到,获得积分10
24秒前
25秒前
26秒前
爱丽丝敏完成签到,获得积分10
26秒前
27秒前
Yang完成签到,获得积分10
27秒前
xty完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613310
求助须知:如何正确求助?哪些是违规求助? 4698482
关于积分的说明 14898087
捐赠科研通 4735844
什么是DOI,文献DOI怎么找? 2546985
邀请新用户注册赠送积分活动 1510961
关于科研通互助平台的介绍 1473545