LSKF-YOLO: Large Selective Kernel Feature Fusion Network for Power Tower Detection in High-Resolution Satellite Remote Sensing Images

遥感 计算机科学 核(代数) 卫星 特征(语言学) 人工智能 深度学习 工程类 地理 语言学 哲学 数学 组合数学 航空航天工程
作者
Chaojun Shi,Xian Zheng,Zhenbing Zhao,Ke Zhang,Zibo Su,Qiaochu Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:3
标识
DOI:10.1109/tgrs.2024.3389056
摘要

With the rapid development of high-resolution satellite remote sensing observation technology, power tower detection based on satellite remote sensing images has become a key research focus for power intelligent inspection. However, the performance of power tower detection in satellite remote sensing images needs improvement due to complex back-grounds, small and non-uniform target sizes. To address this, this paper first constructs a multi-scene high-resolution satellite remote sensing power tower dataset, and then proposes the LSKF-YOLO network for high-resolution satellite remote sensing images. This network primarily consists of a large spatial kernel selective attention fusion module and a multi-scale feature alignment fusion structure. The large spatial selective kernel mechanism is improved by using the attentional feature fusion module, provides richer feature information for accurately locating the position of the power tower. The multi-scale feature alignment fusion structure effectively utilizes low-level semantic information, mitigates feature ambiguity in deeper network layers, and enables multi-scale feature fusion of power towers within complex backgrounds. Additionally, the introduction of MPDIoU enhances CIoU, further improving the model's performance. The results demonstrate that the F1 score and mAP0.5 of the LSKF-YOLO network reach 0.764 and 77.47%, respectively. Compared with other deep learning-based satellite remote sensing power tower inspection methods, the LSKF-YOLO network significantly enhances detection accuracy and provides crucial technical support for intelligent inspection of power lines via satellite remote sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
1秒前
1秒前
1秒前
xxxxxxx完成签到,获得积分10
2秒前
砚知完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
sui完成签到,获得积分20
4秒前
搞笑的随机昵称完成签到,获得积分10
4秒前
mariawang发布了新的文献求助30
4秒前
4秒前
超靓诺言应助申志君采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
uf欧发布了新的文献求助10
5秒前
852应助叽叽喳喳采纳,获得10
5秒前
顾矜应助Yanxb采纳,获得10
5秒前
ju完成签到,获得积分10
6秒前
情殇发布了新的文献求助10
6秒前
Sally完成签到,获得积分10
7秒前
bkagyin应助个性元枫采纳,获得10
7秒前
隐形曼青应助典雅的映易采纳,获得10
7秒前
7秒前
7秒前
Ava应助Yuan采纳,获得10
7秒前
SciGPT应助小巧的松鼠采纳,获得10
7秒前
SciGPT应助锂离子采纳,获得10
8秒前
8秒前
台琳玉发布了新的文献求助10
8秒前
黑面宝宝完成签到,获得积分10
9秒前
9秒前
大力平露发布了新的文献求助10
10秒前
10秒前
ding应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
A simple method for reusing western blots on PVDF membranes 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3925736
求助须知:如何正确求助?哪些是违规求助? 3470240
关于积分的说明 10962976
捐赠科研通 3199961
什么是DOI,文献DOI怎么找? 1768018
邀请新用户注册赠送积分活动 857185
科研通“疑难数据库(出版商)”最低求助积分说明 795953