Secure and efficient federated learning via novel multi-party computation and compressed sensing

计算机科学 联合学习 计算 压缩传感 安全多方计算 安全两方计算 计算机安全 理论计算机科学 分布式计算 人工智能 算法
作者
Lvjun Chen,Di Xiao,Zhuyang Yu,Maolan Zhang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:667: 120481-120481 被引量:19
标识
DOI:10.1016/j.ins.2024.120481
摘要

Federated learning (FL) enables the full utilization of decentralized training without raw data. However, various attacks still threaten the training process of FL. To address these concerns, differential privacy (DP) and secure multi-party computation (SMC) are applied, but these methods may result in low accuracy and heavy training load. Moreover, the high communication consumption of FL in resource-constrained devices is also a challenging problem. In this paper, we propose a novel SMC algorithm for the FL (FL-IPFE) to protect the local gradients. It does not require a trusted third party (TTP) and is more suitable for FL. Furthermore, we propose a secure and efficient FL algorithm (SEFL), which applies compressed sensing (CS) and all-or-nothing transform (AONT) to minimize the number of transmitted and encrypted model updates. Additionally, our FL-IPFE is used to encrypt the last element of the preprocessed parameters for guaranteeing the security of the entire local model updates. Meanwhile, the issue of participant dropouts is also taken into account. Theoretical analyses demonstrate that our proposed algorithms can aggregate model updates with high security. Finally, experimental evaluation reveals that our SEFL possesses higher efficiency compared to other state-of-the-art works, while providing comparable model accuracy and strong privacy guarantees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mieyy应助科研小贩采纳,获得10
刚刚
刚刚
浮游应助你喝不喝娃哈哈采纳,获得10
刚刚
Ronin完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
3秒前
祁瓀完成签到,获得积分10
3秒前
4秒前
4秒前
zyh_123完成签到,获得积分10
5秒前
Chuncheng完成签到,获得积分10
6秒前
淡然亦云完成签到 ,获得积分10
6秒前
6秒前
7秒前
姚冷雁完成签到,获得积分20
7秒前
山与发布了新的文献求助10
7秒前
相南相北发布了新的文献求助10
7秒前
小天使发布了新的文献求助10
7秒前
cy完成签到 ,获得积分10
7秒前
胡振宁发布了新的文献求助10
9秒前
sihan625完成签到,获得积分20
9秒前
9秒前
Orange应助迷路竹采纳,获得10
10秒前
wz0330完成签到,获得积分10
10秒前
橘子完成签到,获得积分10
10秒前
陈熙发布了新的文献求助20
10秒前
10秒前
10秒前
11秒前
12秒前
能干储完成签到,获得积分10
12秒前
Jasper应助唯有长青采纳,获得10
12秒前
可爱的函函应助Chuncheng采纳,获得10
13秒前
DijiaXu应助白勺采纳,获得10
13秒前
高兴完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072516
求助须知:如何正确求助?哪些是违规求助? 4292847
关于积分的说明 13376248
捐赠科研通 4114022
什么是DOI,文献DOI怎么找? 2252800
邀请新用户注册赠送积分活动 1257561
关于科研通互助平台的介绍 1190352