亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Target hierarchy-guided knowledge tracing : Fine-grained knowledge state modeling

计算机科学 等级制度 追踪 基于知识的系统 国家(计算机科学) 人工智能 知识管理 程序设计语言 经济 市场经济
作者
Xinjie Sun,Kai Zhang,Shuanghong Shen,Fei Wang,Yuxiang Guo,Qi Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:251: 123898-123898 被引量:4
标识
DOI:10.1016/j.eswa.2024.123898
摘要

knowledge Tracing (KT) focuses on modeling the exercise process of students, assessing their knowledge state changes during the exercise process, and further providing targeted guidance for teaching and learning. Current KT models have made significant progress by utilizing deep learning technologies to model relevant attributes of the questions. However, in current knowledge tracing strategies, we have yet to exhaustively explore how to precisely evaluate the hierarchies of students' knowledge mastery to better discern their current target hierarchy. To address the limitations of the KT model in accurately identifying and positioning target hierarchy, our research focuses on two key areas: first, we dynamically track students' target hierarchies by evaluating their feedback on questions at different hierarchies ; second, we assess their actual question-solving abilities within these target hierarchies, thereby optimizing our evaluation of their knowledge status. Based on these insights, we propose the Target Hierarchy-guided Knowledge Tracing (THKT) model. In this model, we first incorporate the identification of question hierarchy into the model representation. Then, to avoid homogenization of the target hierarchy, we dynamically track the appropriate hierarchy for students based on their varying feedback to questions of the same hierarchy, thereby pinpointing their learning target hierarchies. Simultaneously, we develop a KCs applied ability learning module that works in conjunction with the target hierarchies to generate interpretable prediction results. The proposed THKT model has been tested and evaluated using three public, real-world educational datasets. The findings clearly demonstrate that our approach shines in the realm of KT prediction tasks, providing significantly interpretability. For broader research, we plan to provide the source code at: https://github.com/xinjiesun-ustc/THKT to ensure accessibility and promote further innovation in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljl86400完成签到,获得积分10
18秒前
27秒前
123发布了新的文献求助10
32秒前
科研通AI2S应助发发发发发采纳,获得10
48秒前
53秒前
Demi发布了新的文献求助10
58秒前
发发发发发完成签到,获得积分20
1分钟前
1分钟前
2分钟前
Panther完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
哦哦哦哦哦拖拉大王完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
yindi1991完成签到 ,获得积分10
6分钟前
123456777完成签到 ,获得积分10
6分钟前
xdlongchem完成签到,获得积分10
7分钟前
7分钟前
Pretrial完成签到 ,获得积分10
7分钟前
失眠的霸完成签到,获得积分10
7分钟前
orixero应助科研通管家采纳,获得10
10分钟前
科研通AI5应助budingman采纳,获得10
11分钟前
jun完成签到,获得积分10
11分钟前
11分钟前
11分钟前
11分钟前
budingman发布了新的文献求助10
11分钟前
Tayzon完成签到 ,获得积分10
12分钟前
12分钟前
12分钟前
田様应助还单身的储采纳,获得10
13分钟前
万邦德完成签到,获得积分10
13分钟前
13分钟前
13分钟前
还单身的储完成签到,获得积分20
13分钟前
13分钟前
14分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798503
求助须知:如何正确求助?哪些是违规求助? 3344017
关于积分的说明 10318320
捐赠科研通 3060565
什么是DOI,文献DOI怎么找? 1679670
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763323