Novel Class Discovery in Chest X-rays via Paired Images and Text

班级(哲学) 计算机科学 物理 人工智能
作者
Jiaying Zhou,Yang Liu,Qing-Chao Chen
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (7): 7650-7658
标识
DOI:10.1609/aaai.v38i7.28598
摘要

Novel class discover(NCD) aims to identify new classes undefined during model training phase with the help of knowledge of known classes. Many methods have been proposed and notably boosted performance of NCD in natural images. However, there has been no work done in discovering new classes based on medical images and disease categories, which is crucial for understanding and diagnosing specific diseases. Moreover, most of the existing methods only utilize information from image modality and use labels as the only supervisory information. In this paper, we propose a multi-modal novel class discovery method based on paired images and text, inspired by the low classification accuracy of chest X-ray images and the relatively higher accuracy of the paired text. Specifically, we first pretrain the image encoder and text encoder with multi-modal contrastive learning on the entire dataset and then we generate pseudo-labels separately on the image branch and text branch. We utilize intra-modal consistency to assess the quality of pseudo-labels and adjust the weights of the pseudo-labels from both branches to generate the ultimate pseudo-labels for training. Experiments on eight subset splits of MIMIC-CXR-JPG dataset show that our method improves the clustering performance of unlabeled classes by about 10% on average compared to state-of-the-art methods. Code is available at: https://github.com/zzzzzzzzjy/MMNCD-main.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助wendy采纳,获得10
1秒前
1秒前
小何发布了新的文献求助10
1秒前
5秒前
Betty完成签到 ,获得积分10
5秒前
温暖的数据线完成签到 ,获得积分10
7秒前
9秒前
萝卜发布了新的文献求助10
9秒前
笨笨摇伽完成签到,获得积分10
9秒前
Sinner完成签到,获得积分10
9秒前
小柒发布了新的文献求助10
15秒前
大胆盼烟完成签到,获得积分10
19秒前
平常的可乐完成签到 ,获得积分10
20秒前
sensAn发布了新的文献求助10
22秒前
自然的清涟应助tcyyswdsh采纳,获得10
24秒前
Jasper应助Sinner采纳,获得10
32秒前
32秒前
34秒前
yihaiqin完成签到 ,获得积分10
35秒前
绵绵发布了新的文献求助10
36秒前
北风应助宗师算个瓢啊采纳,获得10
37秒前
小二郎应助囧囧囧采纳,获得10
39秒前
39秒前
无花果应助Sinner采纳,获得10
39秒前
Cll完成签到 ,获得积分10
40秒前
Ava应助宗师算个瓢啊采纳,获得10
44秒前
大鼻子发布了新的文献求助10
46秒前
慕青应助Sinner采纳,获得10
47秒前
Luloo发布了新的文献求助10
47秒前
51秒前
55秒前
lu关闭了lu文献求助
57秒前
拼搏荧发布了新的文献求助10
58秒前
lu完成签到,获得积分10
1分钟前
oxs完成签到 ,获得积分10
1分钟前
哭泣嵩完成签到,获得积分10
1分钟前
所所应助科研小萌新采纳,获得10
1分钟前
SYLH应助卢敏明采纳,获得10
1分钟前
1分钟前
Bonnienuit完成签到 ,获得积分10
1分钟前
高分求助中
Calogero—Moser—Sutherland Systems 666
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800724
求助须知:如何正确求助?哪些是违规求助? 3346204
关于积分的说明 10328503
捐赠科研通 3062675
什么是DOI,文献DOI怎么找? 1681117
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646