已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Synergistic identification of hydrogeological parameters and pollution source information for groundwater point and areal source contamination based on machine learning surrogate–artificial hummingbird algorithm

作者
Chengming Luo,Xihua Wang,Y. Jun Xu,Shunqing Jia,Zejun Liu,Boyang Mao,Qinya Lv,Xunming Ji,Yanxin Rong,Dai Yan
出处
期刊:Hydrology and Earth System Sciences [Copernicus Publications]
卷期号:29 (20): 5719-5736
标识
DOI:10.5194/hess-29-5719-2025
摘要

Abstract. Effectively remediating groundwater contamination relies on the precise determination of its sources. In recent years, a growing research focus has been placed on concurrently estimating hydrogeological characteristics and locating pollutant origins. However, the precise synergistic identification of point and areal contamination sources of groundwater and combined hydrogeological parameters has not been effectively solved. This study developed an inversion framework that integrates machine learning surrogates with the artificial hummingbird algorithm (AHA). The surrogate models approximating the simulation system were constructed using both backpropagation neural networks (BPNNs) and Kriging techniques. The AHA was then employed to solve the optimized model, and its performance was benchmarked against particle swarm optimization (PSO) and the sparrow search algorithm (SSA). The applicability of this inversion framework was assessed by application to point sources of contamination (PSC) and areal source contamination (ASC). The robustness of the framework was verified through application to scenarios with different noise levels. The results showed that the surrogate model constructed by the BPNN method provided estimates that were closer to those of the simulation model in comparison to the Kriging method. The coefficient of determination (R2) is 0.9994 and mean relative error (MARE) is 3.70 % in PSC, and the R2 is 0.9989 and MARE is 4.48 % in ASC. The performance of the AHA exceeded that of the PSO and the SSA. In PSC, the MARE of the identification result is 1.58 %. In ASC, the MARE of the identification result is 2.03 %, with the AHA able to rapidly and accurately identify the global optimum and improve the inversion efficiency. The proposed inversion framework was demonstrated to apply to both groundwater PSC and ASC problems with strong robustness, providing a reliable basis for groundwater pollution remediation and management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱志伟完成签到,获得积分10
刚刚
星辰大海应助fighting采纳,获得10
刚刚
dl应助橘子采纳,获得20
1秒前
科研通AI6应助julien采纳,获得10
2秒前
2秒前
Ashmitte完成签到,获得积分10
2秒前
sprileye发布了新的文献求助10
2秒前
mashibeo应助玉米采纳,获得10
7秒前
8秒前
一一发布了新的文献求助10
8秒前
弥里完成签到 ,获得积分10
8秒前
杨迪祥完成签到 ,获得积分10
9秒前
张来完成签到 ,获得积分10
9秒前
冷静茉莉完成签到 ,获得积分10
11秒前
庄建煌发布了新的文献求助10
13秒前
忧伤的鼠标关注了科研通微信公众号
13秒前
hxy2019554520发布了新的文献求助10
13秒前
14秒前
俏皮的一德完成签到,获得积分10
14秒前
Turbo发布了新的文献求助10
19秒前
上官若男应助呆萌谷兰采纳,获得10
20秒前
21秒前
21秒前
22秒前
我们完成签到 ,获得积分10
24秒前
大意的绿蓉完成签到,获得积分10
27秒前
简因完成签到 ,获得积分10
27秒前
29秒前
洁洁子完成签到 ,获得积分10
30秒前
30秒前
30秒前
热心的幻巧完成签到,获得积分20
31秒前
我们发布了新的文献求助10
32秒前
32秒前
Turbo完成签到,获得积分10
33秒前
brightface123发布了新的文献求助10
33秒前
35秒前
CNS发布了新的文献求助10
35秒前
可爱的函函应助xiaopan9083采纳,获得10
36秒前
julien发布了新的文献求助10
36秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5385100
求助须知:如何正确求助?哪些是违规求助? 4507800
关于积分的说明 14028997
捐赠科研通 4417585
什么是DOI,文献DOI怎么找? 2426609
邀请新用户注册赠送积分活动 1419298
关于科研通互助平台的介绍 1397675