Physics-Informed Neural Network Enhanced CFD Simulation of Two-Dimensional Green Ammonia Synthesis Reactor

计算流体力学 人工神经网络 氨生产 物理 生化工程 计算机科学 机械 人工智能 工程类 生物 生物化学
作者
Ran Xu,Shibin Zhang,Feilong Rong,Wei Fan,Xiaomeng Zhang,Yunlong Wang,Liang Zan,Xu Ji,Ge He
出处
期刊:Processes [MDPI AG]
卷期号:13 (8): 2457-2457
标识
DOI:10.3390/pr13082457
摘要

The synthesis of “green ammonia” from “green hydrogen” represents a critical pathway for renewable energy integration and industrial decarbonization. This study investigates the green ammonia synthesis process using an axial–radial fixed-bed reactor equipped with three catalyst layers. A simplified two-dimensional physical model was developed, and a multiscale simulation approach combining computational fluid dynamics (CFD) with physics-informed neural networks (PINNs) employed. The simulation results demonstrate that the majority of fluid flows axially through the catalyst beds, leading to significantly higher temperatures in the upper bed regions. The reactor exhibits excellent heat exchange performance, ensuring effective preheating of the feed gas. High-pressure zones are concentrated near the top and bottom gas outlets, while the ammonia mole fraction approaches 100% near the bottom outlet, confirming superior conversion efficiency. By integrating PINNs, the prediction accuracy was substantially improved, with flow field errors in the catalyst beds below 4.5% and ammonia concentration prediction accuracy above 97.2%. Key reaction kinetic parameters (pre-exponential factor k0 and activation energy Ea) were successfully inverted with errors within 7%, while computational efficiency increased by 200 times compared to traditional CFD. The proposed CFD–PINN integrated framework provides a high-fidelity and computationally efficient simulation tool for green ammonia reactor design, particularly suitable for scenarios with fluctuating hydrogen supply. The reactor design reduces energy per unit ammonia and improves conversion efficiency. Its radial flow configuration enhances operational stability by damping feed fluctuations, thereby accelerating green hydrogen adoption. By reducing fossil fuel dependence, it promotes industrial decarbonization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxy完成签到,获得积分10
刚刚
香蕉觅云应助心平气静采纳,获得10
1秒前
紫津完成签到,获得积分10
3秒前
豪123456完成签到,获得积分10
3秒前
zxy发布了新的文献求助10
3秒前
彼岸完成签到,获得积分20
4秒前
5秒前
5秒前
6秒前
89发布了新的文献求助10
6秒前
嘛籽m完成签到 ,获得积分10
7秒前
star应助Hubert采纳,获得200
7秒前
gdsfgdf完成签到,获得积分10
8秒前
Orange应助加油少年采纳,获得10
8秒前
9秒前
9秒前
快乐傲南发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
15秒前
李天磊发布了新的文献求助10
15秒前
李爱国应助net80yhm采纳,获得10
15秒前
naive发布了新的文献求助10
16秒前
SunGuangkai发布了新的文献求助10
16秒前
脑洞疼应助asizen采纳,获得10
17秒前
qinqiny完成签到 ,获得积分10
17秒前
17秒前
xiaoy完成签到,获得积分20
18秒前
Enns完成签到 ,获得积分10
18秒前
7890733发布了新的文献求助10
18秒前
大鱼大鱼完成签到,获得积分10
18秒前
好好完成签到,获得积分10
19秒前
19秒前
19秒前
淡定的萝莉完成签到,获得积分10
20秒前
21秒前
啊哈哈哈哈哈完成签到 ,获得积分10
22秒前
麻薯头头发布了新的文献求助10
22秒前
maclogos发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295495
求助须知:如何正确求助?哪些是违规求助? 4445003
关于积分的说明 13835136
捐赠科研通 4329390
什么是DOI,文献DOI怎么找? 2376646
邀请新用户注册赠送积分活动 1371924
关于科研通互助平台的介绍 1337206