UAV High-Voltage Power Transmission Line Autonomous Correction Inspection System Based on Object Detection

计算机科学 人工智能 目标检测 最小边界框 计算机视觉 电力传输 骨干网 对象(语法) 频道(广播) 特征(语言学) 卷积(计算机科学) 光学(聚焦) 特征提取 职位(财务) 人工神经网络 图像(数学) 工程类 模式识别(心理学) 电气工程 哲学 经济 财务 物理 语言学 光学 计算机网络
作者
Ziran Li,Qi Wang,Tianyi Zhang,Cheng Ju,Satoshi Suzuki,Akio Namiki
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (9): 10215-10230 被引量:16
标识
DOI:10.1109/jsen.2023.3260360
摘要

With the development of technology, unmanned aerial vehicles (UAVs) are playing an increasingly important role in the inspection of high-voltage power transmission line. The traditional inspection method relies on the operator to manually control the drone for inspection. Although many companies are using real-time dynamic carrier phase differencing technology to achieve high-precision positioning of UAVs, when UAVs fly autonomously at high altitudes to photograph specific objects, the objects tend to deviate from the center of the picture. To address this error, in this article, an autonomous UAV inspection system based on object detection is designed: 1) to detect inspection objects, the corresponding dataset is established on the basis of the UAV autonomous inspection task; 2) to obtain the position information of the target object, a lightweight object detector based on the YOLOX network model is designed. First, the backbone is replaced with MobileNetv3. Next, in the neck structure, the Ghost module is introduced and depthwise convolution is applied instead of normal convolution. Then, to embed the location information into the channel attention, coordinate attention (CA) is introduced after the output feature layer of the backbone, enabling the lightweight network to operate on a larger area of focus. Finally, to improve the accuracy of the bounding box regression, the ${\alpha }$ -distance-IoU (DIOU) loss function is introduced; 3) to obtain the best image acquisition position, the results of object detection combined with the real-time status of the UAV are used; and 4) to enable the UAV to complete the final corrections, position control and altitude control are used. Compared with the original YOLOX_tiny, the new model improves the mAP_0.5:0.95 metric by about 2% points, with a significant reduction in the number of parameters and computation, while running at 56 frames/s on Nvidia NX. This system can effectively solve the problem of the target deviating from the center of the picture when the UAV takes pictures during a high-altitude autonomous inspection, verified by many actual flight experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luming完成签到 ,获得积分10
刚刚
天天快乐应助Alluring采纳,获得10
1秒前
雷雷发布了新的文献求助10
1秒前
2秒前
苹果晓丝发布了新的文献求助10
3秒前
科研通AI5应助xzy采纳,获得10
6秒前
nana发布了新的文献求助10
6秒前
科研通AI5应助骆西西采纳,获得10
7秒前
霸气曼彤完成签到,获得积分10
7秒前
科研通AI5应助mjhh采纳,获得10
8秒前
浮游应助www采纳,获得10
9秒前
ABLAT发布了新的文献求助10
10秒前
爆米花应助风清扬采纳,获得30
10秒前
香蕉觅云应助ZhijunXiang采纳,获得10
11秒前
11秒前
科研通AI5应助雷雷采纳,获得10
12秒前
12秒前
vivy完成签到,获得积分10
13秒前
浮游应助巫万声采纳,获得10
14秒前
云泰迪完成签到,获得积分10
14秒前
Hello应助殷勤的访烟采纳,获得10
15秒前
vivy发布了新的文献求助20
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
Terahertz完成签到 ,获得积分10
17秒前
小马甲应助露露采纳,获得10
18秒前
研友_dl完成签到,获得积分10
18秒前
19秒前
21秒前
坚强丹雪完成签到,获得积分10
22秒前
小麦子完成签到,获得积分10
22秒前
nana完成签到 ,获得积分10
23秒前
23秒前
暮冬完成签到 ,获得积分10
23秒前
24秒前
小马甲应助谷谷采纳,获得10
26秒前
26秒前
26秒前
银色星辰发布了新的文献求助30
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4921720
求助须知:如何正确求助?哪些是违规求助? 4192827
关于积分的说明 13023256
捐赠科研通 3964364
什么是DOI,文献DOI怎么找? 2172939
邀请新用户注册赠送积分活动 1190594
关于科研通互助平台的介绍 1099777