Probabilistic Multi-Energy Load Forecasting for Integrated Energy System Based on Bayesian Transformer Network

概率逻辑 计算机科学 贝叶斯概率 水准点(测量) 贝叶斯网络 联合概率分布 概率分布 变压器 先验概率 编码器 动态贝叶斯网络 贝叶斯推理 人工智能 数据挖掘 工程类 数学 电压 统计 大地测量学 电气工程 地理 操作系统
作者
Chen Wang,Ying Wang,Zhetong Ding,Kaifeng Zhang
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 1495-1508 被引量:9
标识
DOI:10.1109/tsg.2023.3296647
摘要

Probabilistic multi-energy load forecasting in an integrated energy system is very complex, because it needs to consider the following three aspects simultaneously: 1) Complex coupling relationship exists between multi-energy loads. 2) The intrinsic distribution of load uncertainties and dynamic changes of the distributions should be captured. 3) The probability distribution containing sufficient information should be generated. To address these issues, this paper proposes a multi-task Bayesian neural network, Bayesian Multiple-Decoder Transformer (BMDeT), which can capture both epistemic and aleatoric uncertainty, and achieve the joint probabilistic forecasting of the multi-energy loads considering their complex coupling relationship and related uncertainties. Firstly, the proposed model adopts the one-encoder multi-decoder framework, which could catch the multi-load coupling information by one Bayesian encoder and perform respective subtasks by multiple Bayesian decoders. Specifically, the Bayesian multi-head attention mechanism is proposed to capture the complex coupling relationship and uncertainties between multi-energy loads by optimizing the distribution of network parameters. Then, a multi-task balance method based on Bayesian theory is proposed to quantify the uncertainties of different tasks by giving trainable weights. Finally, the proposed model has been verified on a real-world load data set, the results show that it has superior performance over other benchmark models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
景景好完成签到,获得积分10
1秒前
不安太阳完成签到,获得积分10
2秒前
小王发布了新的文献求助10
2秒前
abcc1234完成签到,获得积分10
3秒前
清爽的映容完成签到,获得积分10
3秒前
Invincible完成签到 ,获得积分10
3秒前
Lucas应助光影采纳,获得10
3秒前
4秒前
6秒前
万能图书馆应助研友_V8RmmZ采纳,获得30
6秒前
Jasper应助研友_V8RmmZ采纳,获得10
6秒前
7秒前
7秒前
健忘捕发布了新的文献求助10
8秒前
8秒前
Owen应助快乐茗采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
Thien应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
SCINEXUS应助科研通管家采纳,获得30
9秒前
小王完成签到,获得积分10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
9秒前
万能图书馆应助小W爱吃梨采纳,获得10
9秒前
Cain完成签到,获得积分10
10秒前
10秒前
坐看云起发布了新的文献求助10
10秒前
10秒前
11秒前
小次之山发布了新的文献求助10
12秒前
欣雨完成签到,获得积分20
13秒前
CodeCraft应助绝不拖延采纳,获得10
13秒前
力量发布了新的文献求助10
14秒前
SciGPT应助feng采纳,获得10
14秒前
汉堡包应助gwh采纳,获得10
15秒前
15秒前
rainbow5432完成签到 ,获得积分10
15秒前
爆米花应助追寻孤风采纳,获得10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789328
求助须知:如何正确求助?哪些是违规求助? 3334334
关于积分的说明 10269432
捐赠科研通 3050794
什么是DOI,文献DOI怎么找? 1674162
邀请新用户注册赠送积分活动 802530
科研通“疑难数据库(出版商)”最低求助积分说明 760693