Deep learning‐based classification and segmentation of interictal epileptiform discharges using multichannel electroencephalography

发作性 脑电图 人工智能 计算机科学 分割 编码器 深度学习 模式识别(心理学) 召回 语音识别 心理学 神经科学 操作系统 认知心理学
作者
Yulin Sun,Min Guan,Xun Chen,Fengling Feng,Runnan He,Lian Huang,Xiaoguang Tong,Huan Zhou,Xiuyun Liu,Ming Dong
出处
期刊:Epilepsia [Wiley]
卷期号:66 (9): 3398-3410
标识
DOI:10.1111/epi.18463
摘要

Abstract Objective This study was undertaken to develop a deep learning framework that can classify and segment interictal epileptiform discharges (IEDs) in multichannel electroencephalographic (EEG) recordings with high accuracy, preserving both spatial information and interchannel interactions. Methods We proposed a novel deep learning framework, U‐IEDNet, for detecting IEDs in multichannel EEG. The U‐IEDNet framework employs convolutional layers and bidirectional gated recurrent units as a temporal encoder to extract temporal features from single‐channel EEG, followed by the use of transformer networks as a spatial encoder to fuse multichannel features and extract interchannel interaction information. Transposed convolutional layers form a temporal decoder, creating a U‐shaped architecture with the encoder. This upsamples features to estimate the probability of each EEG sampling point falling within the IED range, enabling segmentation of IEDs from background activity. Two datasets, a public database with 370 patient recordings and our own annotated database with 43 patient recordings, were used for model establishment and validation. Results The results showed prominent advantage compared with other methods. U‐IEDNet achieved a recall of .916, precision of .911, F1‐score of .912, and false positive rate (FPR) of .030 on the public database. The classification performance in our own annotated database achieved a recall of .905, a precision of .902, an F1‐score of .903, and an FPR of .072. The segmentation performance had a recall of .903, a precision of .916, and an F1‐score of .909. Additionally, this study analyzes attention weights in the transformer network based on brain network theory to elucidate the spatial feature fusion process, enhancing the interpretability of the IED detection model. Significance In this paper, we aim to present an artificial intelligence‐based toolbox for IED detection, which may facilitate epilepsy diagnosis at the bedside in the future. U‐IEDNet demonstrates great potential to improve the accuracy and efficiency of IED detection in multichannel EEG recordings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
求助人员发布了新的文献求助10
1秒前
YuLu完成签到 ,获得积分10
2秒前
3秒前
牧紫菱完成签到,获得积分10
3秒前
芯止谭轩完成签到,获得积分10
4秒前
清秀的怀蕊完成签到 ,获得积分10
5秒前
6秒前
夏姬宁静完成签到,获得积分10
9秒前
是我呀吼完成签到,获得积分10
9秒前
wahah完成签到,获得积分10
10秒前
科研人完成签到 ,获得积分10
11秒前
12秒前
徐佳达完成签到,获得积分10
15秒前
自觉的曼彤完成签到,获得积分10
15秒前
碎冰冰完成签到,获得积分10
16秒前
852应助猪猪hero采纳,获得10
17秒前
852应助孤独的冰彤采纳,获得10
17秒前
violenceee完成签到,获得积分20
17秒前
Jasper应助易只羊采纳,获得10
18秒前
清风细雨完成签到 ,获得积分10
18秒前
大大大长腿完成签到,获得积分10
18秒前
东少完成签到,获得积分10
18秒前
Ethan完成签到,获得积分10
20秒前
21秒前
22秒前
22秒前
善良的火完成签到 ,获得积分10
23秒前
luo完成签到 ,获得积分10
24秒前
谦让寻凝完成签到 ,获得积分10
26秒前
猪猪hero发布了新的文献求助10
26秒前
hjm发布了新的文献求助10
27秒前
甜甜圈688完成签到,获得积分10
28秒前
luck完成签到 ,获得积分10
29秒前
桐桐应助guo_a_n采纳,获得10
29秒前
叶千山完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
易只羊完成签到,获得积分10
30秒前
ZhouQixing完成签到,获得积分10
30秒前
友好的牛排完成签到,获得积分0
31秒前
感动的听荷完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599985
求助须知:如何正确求助?哪些是违规求助? 4685775
关于积分的说明 14839394
捐赠科研通 4674628
什么是DOI,文献DOI怎么找? 2538482
邀请新用户注册赠送积分活动 1505631
关于科研通互助平台的介绍 1471109