Segment Together: A Versatile Paradigm for Semi-Supervised Medical Image Segmentation

图像分割 计算机科学 人工智能 计算机视觉 医学影像学 分割 图像(数学) 模式识别(心理学)
作者
Qingjie Zeng,Yutong Xie,Zilin Lu,Mengkang Lu,Yicheng Wu,Yong Xia
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (7): 2948-2959 被引量:15
标识
DOI:10.1109/tmi.2025.3556310
摘要

The scarcity of annotations has become a significant obstacle in training powerful deep-learning models for medical image segmentation, limiting their clinical application. To overcome this, semi-supervised learning that leverages abundant unlabeled data is highly desirable to enhance model training. However, most existing works still focus on specific medical tasks and underestimate the potential of learning across diverse tasks and datasets. In this paper, we propose a Versatile Semi-supervised framework (VerSemi) to present a new perspective that integrates various SSL tasks into a unified model with an extensive label space, exploiting more unlabeled data for semi-supervised medical image segmentation. Specifically, we introduce a dynamic task-prompted design to segment various targets from different datasets. Next, this unified model is used to identify the foreground regions from all labeled data, capturing cross-dataset semantics. Particularly, we create a synthetic task with a CutMix strategy to augment foreground targets within the expanded label space. To effectively utilize unlabeled data, we introduce a consistency constraint that aligns aggregated predictions from various tasks with those from the synthetic task, further guiding the model to accurately segment foreground regions during training. We evaluated our VerSemi framework against seven established SSL methods on four public benchmarking datasets. Our results suggest that VerSemi consistently outperforms all competing methods, beating the second-best method with a 2.69% average Dice gain on four datasets and setting a new state of the art for semi-supervised medical image segmentation. Code is available at https://github.com/maxwell0027/VerSemi.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈琛完成签到,获得积分10
刚刚
成功发布了新的文献求助10
刚刚
丸子鱼完成签到 ,获得积分10
1秒前
yushanriqing完成签到,获得积分10
1秒前
5tr1ve发布了新的文献求助10
2秒前
橙子完成签到,获得积分20
2秒前
科研通AI2S应助fantasy采纳,获得10
2秒前
2秒前
浮游应助快乐湘采纳,获得10
2秒前
kk关闭了kk文献求助
2秒前
科研通AI6应助meng采纳,获得10
2秒前
2秒前
Roger完成签到,获得积分10
3秒前
琳琅完成签到,获得积分10
4秒前
爱科研的文西完成签到,获得积分10
4秒前
fyy完成签到,获得积分20
4秒前
852应助文献蚂蚁采纳,获得10
4秒前
4秒前
4秒前
腼腆的沛蓝完成签到,获得积分20
5秒前
Carol发布了新的文献求助10
5秒前
可爱的函函应助谢志超采纳,获得10
5秒前
橙子发布了新的文献求助10
5秒前
轻松铸海发布了新的文献求助10
6秒前
玛卡巴卡发布了新的文献求助10
6秒前
科目三应助小孙要努力采纳,获得10
6秒前
7秒前
7秒前
姜姜发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
科研通AI6应助成功采纳,获得10
8秒前
小二郎应助明亮的泥猴桃采纳,获得30
9秒前
9秒前
怡然嚣完成签到 ,获得积分10
10秒前
花海完成签到,获得积分10
10秒前
西羽徐发布了新的文献求助10
10秒前
SciGPT应助ZZQ采纳,获得10
10秒前
fantasy发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261422
求助须知:如何正确求助?哪些是违规求助? 4422535
关于积分的说明 13766643
捐赠科研通 4297013
什么是DOI,文献DOI怎么找? 2357641
邀请新用户注册赠送积分活动 1354024
关于科研通互助平台的介绍 1315182