Artificial Intelligence-Driven Revolution in Nanozyme Design: From Serendipity to Rational Engineering

偶然性 合理设计 工程类 计算机科学 纳米技术 哲学 材料科学 认识论
作者
Yixin Yu,Mingzhen Zhang,Kelong Fan
出处
期刊:Materials horizons [Royal Society of Chemistry]
被引量:2
标识
DOI:10.1039/d5mh00719d
摘要

Nanozymes are a class of nanomaterials that possess catalytic functions similar to those of natural enzymes. Due to their tunable catalytic activity and unique nanoscale properties, these materials exhibit significant potential for applications in biomedical diagnostics, industrial catalysis, and environmental remediation. However, the marked heterogeneity in their catalytic performance and complex multidimensional structure-activity relationships pose challenges to traditional trial-and-error experimental paradigms, which suffer from low efficiency in rational design and prolonged development cycles. With the rapid advancement of artificial intelligence (AI) technologies, nanozyme research is undergoing a transformative shift from empirical exploration to a fourth-generation research paradigm characterized by "data-driven and theory-computing" approaches. Here, the deep integration of machine learning (ML) is reshaping the entire nanozyme research and development workflow, offering new opportunities for rational design and intelligent applications. This review begins by systematically introducing the fundamental classifications and algorithmic principles of ML, elucidating its technical advantages in nanozyme research, and proposing a universal ML-assisted research framework tailored to the unique challenges of nanozyme studies. Through representative case studies, we delve into groundbreaking advancements in the use of ML in predicting catalytic activity, optimizing structures, and enabling smart applications of nanozymes. Finally, we address critical challenges in current ML-assisted nanozyme research-such as data quality and model interpretability-and propose future optimization strategies to advance nanozyme studies toward greater efficiency, precision, and intelligence, aiming to provide novel insights for paradigm innovation in materials science, fostering the evolution of next-generation research methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪猪发布了新的文献求助10
刚刚
刚刚
Biotita完成签到,获得积分10
1秒前
gentille发布了新的文献求助10
1秒前
2秒前
2秒前
白立轩完成签到,获得积分10
2秒前
BCB完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
从容的鲜花完成签到,获得积分20
4秒前
利多卡因发布了新的文献求助10
5秒前
bkagyin应助clcl采纳,获得10
5秒前
6秒前
完美世界应助王钢门采纳,获得30
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
默默山蝶完成签到,获得积分10
7秒前
大道要熬发布了新的文献求助10
7秒前
8秒前
BCB发布了新的文献求助10
9秒前
深情安青应助猪猪猪采纳,获得10
10秒前
大模型应助角星星采纳,获得10
10秒前
10秒前
研友_Zlqx38完成签到,获得积分10
10秒前
11秒前
科研通AI5应助知鸢采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
稳重的胡萝卜完成签到,获得积分10
12秒前
12秒前
肖肖发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
胡图图啦啦完成签到,获得积分10
14秒前
NexusExplorer应助无语的又夏采纳,获得10
14秒前
kks569完成签到,获得积分10
16秒前
16秒前
super完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
How to get a PhD: a handbook for students and their supervisors How to get a PhD: a handbook for students and their supervisors (6 th edition), by Estelle M. Phillips and Derek S. Pugh, Milton Keynes, Open University Press/McGraw-Hill Education, 2015, 280 pp., £22.87 (paperback), ISBN 978-0-335-26412-4 500
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4665604
求助须知:如何正确求助?哪些是违规求助? 4046649
关于积分的说明 12516355
捐赠科研通 3739206
什么是DOI,文献DOI怎么找? 2065049
邀请新用户注册赠送积分活动 1094571
科研通“疑难数据库(出版商)”最低求助积分说明 974943