材料科学
阳极
电解质
化学工程
阴极
枝晶(数学)
电极
离子电导率
离子键合
离子
纳米技术
化学
数学
工程类
物理化学
有机化学
几何学
作者
Xiao Miao,Ao Zhong,Sihang Xia,Songling Wu,Haichao Wang,Hao Li,Haoqing Ma,Yao Liu,Chao Yang,Kangning Zhao
出处
期刊:Small methods
[Wiley]
日期:2025-06-17
卷期号:: e2500531-e2500531
被引量:2
标识
DOI:10.1002/smtd.202500531
摘要
Abstract Sodium‐metal batteries (SMBs) emerge as a promising alternative to lithium‐metal systems but face intrinsic challenges of unstable electrode/electrolyte interfaces and rampant dendrite growth, which compromise cyclability and safety. Here, a multifunctional heterogeneous interphase layer (IMS‐Na) with an ion pumping function on metallic sodium is constructed. This is enabled via an in situ reaction of Sb 2 Se 3 powder with Na at room temperature by forming a Na 3 Sb/Na 2 Se hybrid structure as an artificial SEI layer. This artificial SEI layer synergizes ion pumping Na 3 Sb with high ionic conductivity (adsorption energy: −1.31 eV, migration barrier: 0.49 eV) and mechanically stable Na 2 Se with electronic insulation (bandgap: 2.11 eV) and mechanical robustness (Young's modulus: 60.63 GPa). The ion pumping Na 3 Sb homogenizes the “hot spot” to suppress dendrite formation while the mechanically stable Na 2 Se ensures the durability of the interface, which synergically enables dendrite‐free Na deposition. As a result, the IMS‐Na anode achieves ultralow polarization (30 mV) and unprecedented cycling stability (1535 h at 0.5 mA cm −2 ) in carbonate electrolytes. Paired with a Na 3 V 2 (PO 4 ) 3 cathode, the full cell delivers long‐term stability (1400 cycles) and high‐rate capacity (102 mAh g −1 at 2 A g −1 ). This work establishes a design paradigm for artificial SEI layers, balancing ionic transport, electronic insulation, and mechanical resilience, critical for advancing high‐energy‐density metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI