Predicting periprosthetic joint infection in primary total knee arthroplasty: a machine learning model integrating preoperative and perioperative risk factors

假体周围 医学 围手术期 运动医学 骨科手术 关节置换术 关节置换术 痹症科 全膝关节置换术 膝关节 内科学 外科 物理疗法
作者
Yuk Yee Chong,Lawrence Chun‐Man Lau,Tianshu Jiang,Chunyi Wen,Jiang Zhang,Amy Cheung,Michelle Hilda Luk,Ka Chun Thomas Leung,Man Hong Cheung,Henry Fu,Pky Chiu,PK Chan
出处
期刊:BMC Musculoskeletal Disorders [Springer Nature]
卷期号:26 (1) 被引量:1
标识
DOI:10.1186/s12891-025-08296-6
摘要

Periprosthetic joint infection leads to significant morbidity and mortality after total knee arthroplasty. Preoperative and perioperative risk prediction and assessment tools are lacking in Asia. This study developed the first machine learning model for individualized prediction of periprosthetic joint infection following primary total knee arthroplasty in this demographic. A retrospective analysis was conducted on 3,483 primary total knee arthroplasty (81 with periprosthetic joint infection) from 1998 to 2021 in a Chinese tertiary and quaternary referral academic center. We gathered 60 features, encompassing patient demographics, operation-related variables, laboratory findings, and comorbidities. Six of them were selected after univariate and multivariate analysis. Five machine learning models were trained with stratified 10-fold cross-validation and assessed by discrimination and calibration analysis to determine the optimal predictive model. The balanced random forest model demonstrated the best predictive capability with average metrics of 0.963 for the area under the receiver operating characteristic curve, 0.920 for balanced accuracy, 0.938 for sensitivity, and 0.902 for specificity. The significant risk factors identified were long operative time (OR, 9.07; p = 0.018), male gender (OR, 3.11; p < 0.001), ASA > 2 (OR, 1.68; p = 0.028), history of anemia (OR, 2.17; p = 0.023), and history of septic arthritis (OR, 4.35; p = 0.030). Spinal anesthesia emerged as a protective factor (OR, 0.55; p = 0.022). Our study presented the first machine learning model in Asia to predict periprosthetic joint infection following primary total knee arthroplasty. We enhanced the model's usability by providing global and local interpretations. This tool provides preoperative and perioperative risk assessment for periprosthetic joint infection and opens the potential for better individualized optimization before total knee arthroplasty.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
水1111完成签到,获得积分10
2秒前
小鼠星球完成签到,获得积分10
2秒前
豆花完成签到,获得积分10
3秒前
英姑应助gzl采纳,获得10
3秒前
songsongsong完成签到,获得积分20
3秒前
贪玩颦完成签到,获得积分20
3秒前
5秒前
5秒前
无足鸟发布了新的文献求助10
5秒前
Kaen发布了新的文献求助10
6秒前
能干雁桃发布了新的文献求助30
6秒前
贪玩颦发布了新的文献求助10
6秒前
周辰完成签到,获得积分10
7秒前
浮游应助酷炫的__采纳,获得10
7秒前
修利发布了新的文献求助10
7秒前
月月发布了新的文献求助10
8秒前
WWW=WWW发布了新的文献求助10
8秒前
9秒前
9秒前
jiafang发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
Jeffery完成签到,获得积分10
11秒前
11秒前
11秒前
MQueen完成签到,获得积分10
12秒前
华仔应助王欣瑶采纳,获得10
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
heavenhorse发布了新的文献求助30
13秒前
gzl发布了新的文献求助10
14秒前
玛卡巴卡发布了新的文献求助10
14秒前
16秒前
月月完成签到,获得积分10
16秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454169
求助须知:如何正确求助?哪些是违规求助? 4561592
关于积分的说明 14282986
捐赠科研通 4485543
什么是DOI,文献DOI怎么找? 2456809
邀请新用户注册赠送积分活动 1447428
关于科研通互助平台的介绍 1422808