The Machine Learning Models in Major Cardiovascular Adverse Events Prediction Based on Coronary Computed Tomography Angiography: Systematic Review

冠状动脉造影 医学 计算机断层摄影术 计算机断层血管造影 放射科 不利影响 血管造影 医学物理学 心脏病学 内科学 心肌梗塞
作者
Yuchen Ma,Mohan Li,Huiqun Wu
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e68872-e68872 被引量:1
标识
DOI:10.2196/68872
摘要

Background Coronary computed tomography angiography (CCTA) has emerged as the first-line noninvasive imaging test for patients at high risk of coronary artery disease (CAD). When combined with machine learning (ML), it provides more valid evidence in diagnosing major adverse cardiovascular events (MACEs). Radiomics provides informative multidimensional features that can help identify high-risk populations and can improve the diagnostic performance of CCTA. However, its role in predicting MACEs remains highly debated. Objective We evaluated the diagnostic value of ML models constructed using radiomic features extracted from CCTA in predicting MACEs, and compared the performance of different learning algorithms and models, thereby providing clinical recommendations for the diagnosis, treatment, and prognosis of MACEs. Methods We comprehensively searched 5 online databases, Cochrane Library, Web of Science, Elsevier, CNKI, and PubMed, up to September 10, 2024, for original studies that used ML models among patients who underwent CCTA to predict MACEs and reported clinical outcomes and endpoints related to it. Risk of bias in the ML models was assessed by the Prediction Model Risk of Bias Assessment Tool, while the radiomics quality score (RQS) was used to evaluate the methodological quality of the radiomics prediction model development and validation. We also followed the TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) guidelines to ensure transparency of ML models included. Meta-analysis was performed using Meta-DiSc software (version 1.4), which included the I² score and Cochran Q test, along with StataMP 17 (StataCorp) to assess heterogeneity and publication bias. Due to the high heterogeneity observed, subgroup analysis was conducted based on different model groups. Results Ten studies were included in the analysis, 5 (50%) of which differentiated between training and testing groups, where the training set collected 17 kinds of models and the testing set gathered 26 models. The pooled area under the receiver operating characteristic (AUROC) curve for ML models predicting MACEs was 0.7879 in the training set and 0.7981 in the testing set. Logistic regression (LR), the most commonly used algorithm, achieved an AUROC of 0.8229 in the testing group and 0.7983 in the training group. Non-LR models yielded AUROCs of 0.7390 in the testing set and 0.7648 in the training set, while the random forest (RF) models reached an AUROC of 0.8444 in the training group. Conclusions Study limitations included a limited number of studies, high heterogeneity, and the types of included studies. The performance of ML models for predicting MACEs was found to be superior to that of general models based on basic feature extraction and integration from CCTA. Specifically, LR-based ML diagnostic models demonstrated significant clinical potential, particularly when combined with clinical features, and are worth further validation through more clinical trials. Trial Registration PROSPERO CRD42024596364; https://www.crd.york.ac.uk/PROSPERO/view/CRD42024596364
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysk完成签到,获得积分10
刚刚
123发布了新的文献求助10
刚刚
mkmkm发布了新的文献求助10
刚刚
1秒前
1秒前
CodeCraft应助懒得起名字采纳,获得10
2秒前
关于我发布了新的文献求助10
2秒前
Ethan发布了新的文献求助10
2秒前
英姑应助迅速的乌龟采纳,获得10
3秒前
4秒前
4秒前
DandanHan0916发布了新的文献求助10
4秒前
小雨转晴完成签到,获得积分10
4秒前
思源应助追逐123采纳,获得10
5秒前
yekindar发布了新的文献求助10
6秒前
6秒前
Carol完成签到,获得积分10
7秒前
7秒前
12完成签到 ,获得积分10
8秒前
Spike完成签到,获得积分10
9秒前
奋斗的暖阳完成签到,获得积分10
9秒前
王宏宇发布了新的文献求助10
9秒前
yekindar完成签到,获得积分10
10秒前
xunxun发布了新的文献求助10
10秒前
10秒前
蜗爱学习完成签到 ,获得积分10
10秒前
深情安青应助羽羽采纳,获得10
11秒前
我要circulation完成签到,获得积分10
11秒前
orixero应助旭日采纳,获得10
11秒前
浮游应助李星采纳,获得10
12秒前
12秒前
12秒前
雪山飞龙发布了新的文献求助10
14秒前
JamesPei应助DandanHan0916采纳,获得10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
认真搞科研啦完成签到,获得积分10
15秒前
Jasper应助关于我采纳,获得10
17秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Bacillus subtilis and Other Gram‐Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4853684
求助须知:如何正确求助?哪些是违规求助? 4151453
关于积分的说明 12862147
捐赠科研通 3900476
什么是DOI,文献DOI怎么找? 2143291
邀请新用户注册赠送积分活动 1163002
关于科研通互助平台的介绍 1063480