草原
自然地理学
土地利用
地理
环境科学
栖息地
空间异质性
比例(比率)
空间生态学
空间分布
土地覆盖
驱动因素
共同空间格局
土地利用、土地利用的变化和林业
流域
生态学
中国
地图学
遥感
考古
生物
作者
Xianglin Ji,Yilin Sun,Wei Guo,Chuanwu Zhao,Kai Li
标识
DOI:10.1016/j.jenvman.2023.118729
摘要
Studying the spatial distribution of land use/land cover (LULC) and habitat quality (HQ), influenced by both climate change and socio-economic factors, holds immense importance for fostering ecological sustainability. The previous scale setting was based on changes in granularity and division of spatial ranges, without considering the differences in land quantity structure and spatial expansion under different spatial ranges. Therefore, this study is based on climate and economic data at different spatial scales to determine the various land demands of provinces (YRB-P) and integration of provinces (YRB-I) in the Yellow River Basin, and to limit the expansion of LULC in corresponding regions. At the same time, we have also established three future scenarios representing different development speeds based on the latest path of shared socio-economic development in CMIP6. We found exhibit significant characteristics in ecological responses under combinations of different scales and scenarios. Shandong and Henan Provinces are the main gathering (38.7-41.7%, 24.1-26.5%) and expansion (68.54-85.99 × 102km2, 18.89-34.12 × 102km2) provinces of built-up land under the YRB-P scale, and their HQ (0.260-0.397) are significantly lower than the average HQ (0.619-0.654). Forest land, grassland, and high value regions of HQ show "45°" distribution at two scales, with high and low values clearly clustered (Moran's I is 0.5440-0.580). The HQ evolution region is larger and more dispersed at the YRB-P scale, but accumulates in local areas at the YRB-I scale. In addition, the highest and lowest HQ mean values appear under the low speed development scenario at the YRB-P scale (0.721) and the rapid development scenario at the YRB-I scale (0.689), respectively. This study helps decision-makers control different scales and development scenarios to improve the ecological level of the study area.
科研通智能强力驱动
Strongly Powered by AbleSci AI