Microstructure analysis of a CoCrFeNi high-entropy alloy after compressive deformation

材料科学 位错 晶界 合金 微观结构 冶金 复合材料
作者
Haihong Jiang,Qingmei Gong,Martin Peterlechner,Sergiy V. Divinski,Gerhard Wilde
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier BV]
卷期号:888: 145785-145785 被引量:8
标识
DOI:10.1016/j.msea.2023.145785
摘要

A sharp increase in the dislocation density and in the fraction of low-angle grain boundaries (LAGBs) has often been observed during the early-stage deformation of high-entropy alloys. To study the underlying reasons for this behavior, the microstructure of plastic deformation applying at a low compressive strain of 3.3% was analyzed in the CoCrFeNi high-entropy alloy. This deformation results in a relatively higher dislocation density in the CoCrFeNi alloy in comparison to that in pure Nickel. A significantly increased dislocation density was observed near grain boundaries that is collaborated by a low value of the anisotropy factor (Az ∼ 2.37) in CoCrFeNi alloys offering favorable conditions for dislocation generation. Moreover, the low anisotropy factor in CoCrFeNi alloys appears to be caused by their strong chemical heterogeneity. The relatively easy dislocation generation provides an important feature of dislocation interactions in the CoCrFeNi alloy. Local high hardness and high Young's modulus values were observed at newly-formed LAGBs. The evolution of LAGBs strongly depends on the grain orientation and the internal strain, and LAGBs are gradually formed by the accumulation and self-organization into LAGBs at a surprisingly low strain of about 2.61%. The formation of these boundaries is intrinsically promoted by the low stacking fault energy of the CoCrFeNi alloy. An easy dislocation generation and a low strain of LAGB formation result in a high density of retained dislocations, giving rise to the observed mechanical performance of the material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CAOHOU给pyz988的求助进行了留言
刚刚
爆米花应助zhang采纳,获得10
刚刚
半信美玉c发布了新的文献求助10
1秒前
十七发布了新的文献求助10
2秒前
言三斤发布了新的文献求助10
3秒前
888发布了新的文献求助10
3秒前
hou关注了科研通微信公众号
4秒前
7秒前
2401发布了新的文献求助10
11秒前
活力吐司完成签到,获得积分10
11秒前
12秒前
cfplhys完成签到,获得积分10
13秒前
13秒前
13秒前
always发布了新的文献求助10
14秒前
Meng完成签到,获得积分10
15秒前
江瀚发布了新的文献求助10
16秒前
领导范儿应助LHY采纳,获得10
17秒前
Zhaoyt应助李治稳采纳,获得10
17秒前
打打应助zyc采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
CAOHOU应助科研通管家采纳,获得10
18秒前
易义德发布了新的文献求助30
18秒前
传奇3应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
华仔应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
saisyo发布了新的文献求助10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
23应助科研通管家采纳,获得20
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
NexusExplorer应助小徐医生采纳,获得10
20秒前
LDHUSH完成签到,获得积分10
21秒前
能干的雨完成签到 ,获得积分10
22秒前
24秒前
26秒前
26秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Psychology Applied to Teaching 14th Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4085052
求助须知:如何正确求助?哪些是违规求助? 3624169
关于积分的说明 11496207
捐赠科研通 3338349
什么是DOI,文献DOI怎么找? 1835214
邀请新用户注册赠送积分活动 903759
科研通“疑难数据库(出版商)”最低求助积分说明 821956