The haplotype-resolved genome assembly of autotetraploid rhubarb Rheum officinale provides insights into its genome evolution and massive accumulation of anthraquinones

生物 基因组 遗传学 转座因子 基因家族 基因组学 多倍体 功能基因组学 基因 植物进化
作者
Hongyu Zhang,Qiang He,Longsheng Xing,Ruyu Wang,Yu Wang,Yu Liu,Qinghong Zhou,Xuanzhao Li,Jia Zheng,Ze Liu,Yuqing Miao,Tao Lin,Wei Li,Huilong Du
出处
期刊:Plant communications [Elsevier BV]
卷期号:5 (1): 100677-100677 被引量:21
标识
DOI:10.1016/j.xplc.2023.100677
摘要

Rheum officinale, a member of the Polygonaceae family, is an important medicinal plant used widely in traditional Chinese medicine. Here, we report a 7.68 Gb chromosome-scale assembly of R. officinale with a contig N50 of 3.47 Mb, further clustered into 44 chromosomes across four homologous groups. Comparative genomics analysis revealed that transposable elements contribute significantly to genome evolution, gene copy number variation and gene regulation and expression involved mainly in metabolite biosynthesis, stress resistance and root development of R. officinale. We determined the recently doubled autotetraploid of R. officinale at ∼0.58 Mya and analyzed the genomic features between homologous chromosomes. Although no dominant monoploid genomes were observed at an overall expression level, numerous allele-differential expressed genes, mostly with different transposable elements insertions to their regulatory regions, were identified, suggesting their functional divergence after polyploidization. Combining genomics, transcriptomics and metabolomics, we explored the contributions of gene family amplification and tetraploidization to the abundant production of anthraquinone, and gene expression patterns and the differences in anthraquinone content among tissues of R. officinale. As an autopolyploid genome in herbs, our report offers unprecedented genomic resources for fundamental research of R. officinale and guidance for polyploidy breeding of herbs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容前行发布了新的文献求助10
刚刚
真的不会完成签到,获得积分10
1秒前
乐乐应助Cole采纳,获得10
2秒前
阳光冰颜完成签到,获得积分10
3秒前
FashionBoy应助手机采纳,获得10
3秒前
真君山山长完成签到,获得积分10
5秒前
越红完成签到,获得积分10
6秒前
8秒前
hbydyy发布了新的文献求助10
9秒前
11秒前
星辰大海应助采花大盗采纳,获得30
12秒前
在水一方应助AMAME12采纳,获得10
13秒前
陈迹完成签到,获得积分10
13秒前
尹妮妮发布了新的文献求助10
16秒前
荼蘼发布了新的文献求助10
16秒前
思源应助海梦喝汽水采纳,获得10
18秒前
汉堡包应助yahong采纳,获得10
20秒前
wanci应助余生那采纳,获得10
20秒前
情怀应助开放夏旋采纳,获得10
23秒前
27秒前
风清扬应助wangruize采纳,获得10
27秒前
lllkate完成签到,获得积分10
27秒前
英姑应助小孙采纳,获得10
30秒前
31秒前
32秒前
小沈完成签到,获得积分10
36秒前
36秒前
37秒前
xiami发布了新的文献求助10
39秒前
ferritin发布了新的文献求助10
39秒前
MR_MA应助科研通管家采纳,获得10
39秒前
厚百合应助科研通管家采纳,获得30
40秒前
MR_MA应助科研通管家采纳,获得10
40秒前
无花果应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
1351567822应助科研通管家采纳,获得30
40秒前
40秒前
8R60d8应助科研通管家采纳,获得10
40秒前
852应助科研通管家采纳,获得10
40秒前
MILA应助科研通管家采纳,获得10
40秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899796
求助须知:如何正确求助?哪些是违规求助? 3444386
关于积分的说明 10834939
捐赠科研通 3169429
什么是DOI,文献DOI怎么找? 1751105
邀请新用户注册赠送积分活动 846489
科研通“疑难数据库(出版商)”最低求助积分说明 789226