EEG Brainwave Data Classification of a Confused Student Using Moving Average Feature

脑电图 计算机科学 人工智能 分类 特征(语言学) 平滑的 模式识别(心理学) 深度学习 噪音(视频) 机器学习 心理学 计算机视觉 语言学 哲学 精神科 图像(数学)
作者
Jay Mehta,H. Lakhani,Harsh Dave,Sheshang Degadwala,Dhairya Vyas
标识
DOI:10.1109/icpcsn58827.2023.00243
摘要

The measurement of electrical activity in the brain, known as Electroencephalogram (EEG), is a common non-invasive diagnostic method used to detect neurological disorders and investigate cognitive processes such as memory, attention, and learning. Nonetheless, classifying and interpreting EEG data can be challenging due to the signals' complex and noisy nature. This research study examines the classification of EEG data from a student whose brainwave patterns were irregular during academic challenges. The proposed study has first processed the data by smoothing the signals using a moving average feature, and then a variety of deep and machine learning methods are used to categorize the data. Our results demonstrate that the student's EEG data was unique and did not fit within established categories. Our analysis also revealed that the technology used to collect the data may have contributed to the irregular patterns. However, the data can be accurately classified by utilizing a deep learning approach. In addition to highlighting the value of properly processing the data to remove noise and artefacts, this research study demonstrates the potential of both deep learning and machine learning techniques in the interpretation of EEG data. Additionally, the research findings suggest that EEG data classification should consider individual brain activity differences rather than solely relying on existing categories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
严杰完成签到,获得积分10
3秒前
阿麦完成签到 ,获得积分10
3秒前
北一完成签到,获得积分10
4秒前
4秒前
4秒前
zzz发布了新的文献求助10
4秒前
5秒前
6秒前
老猪佩奇完成签到,获得积分10
6秒前
我是老大应助YY采纳,获得10
6秒前
周雨昕发布了新的文献求助10
7秒前
老猪佩奇发布了新的文献求助10
9秒前
xpf完成签到 ,获得积分10
9秒前
王奥博发布了新的文献求助10
9秒前
不爱科研发布了新的文献求助10
9秒前
猪大壮完成签到,获得积分20
9秒前
9秒前
小孟吖发布了新的文献求助10
10秒前
10秒前
10秒前
ZX完成签到,获得积分10
11秒前
蓝书签关注了科研通微信公众号
12秒前
12秒前
充电宝应助科研江小白采纳,获得10
13秒前
13秒前
量子星尘发布了新的文献求助30
14秒前
玊尔发布了新的文献求助10
14秒前
真一松发布了新的文献求助10
15秒前
马香芦完成签到,获得积分10
15秒前
15秒前
17秒前
shine完成签到 ,获得积分10
18秒前
zzz完成签到,获得积分20
18秒前
18秒前
18秒前
18秒前
22秒前
单薄店员发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4284142
求助须知:如何正确求助?哪些是违规求助? 3811882
关于积分的说明 11940602
捐赠科研通 3458364
什么是DOI,文献DOI怎么找? 1896656
邀请新用户注册赠送积分活动 945337
科研通“疑难数据库(出版商)”最低求助积分说明 849105